
QuTiP: Quantum Toolbox in Python
Release 3.1.0

P.D. Nation and J.R. Johansson

December 31, 2014

1

Contents

Contents 2

1 Frontmatter 5
1.1 About This Documentation . 5
1.2 Citing This Project . 5
1.3 Funding . 5
1.4 About QuTiP . 6
1.5 Contributing to QuTiP . 6

2 Installation 7
2.1 General Requirements . 7
2.2 Platform-independent installation . 7
2.3 Get the source code . 7
2.4 Installing from source . 8
2.5 Installation on Ubuntu Linux . 8
2.6 Installation on Mac OS X (10.8+) . 9
2.7 Installation on Windows . 10
2.8 Optional Installation Options . 10
2.9 Verifying the Installation . 11
2.10 Checking Version Information using the About Function . 11

3 Users Guide 13
3.1 Guide Overview . 13
3.2 Basic Operations on Quantum Objects . 13
3.3 Manipulating States and Operators . 20
3.4 Using Tensor Products and Partial Traces . 32
3.5 Time Evolution and Quantum System Dynamics . 36
3.6 Solving for Steady-State Solutions . 70
3.7 An Overview of the Eseries Class . 74
3.8 Two-time correlation functions . 77
3.9 Plotting on the Bloch Sphere . 84
3.10 Visualization of quantum states and processes . 97
3.11 Parallel computation . 105
3.12 Saving QuTiP Objects and Data Sets . 108
3.13 Generating Random Quantum States & Operators . 111
3.14 Modifying Internal QuTiP Settings . 112

4 API documentation 115
4.1 Classes . 115
4.2 Functions . 146

5 Change Log 219
5.1 Version 3.1.0 (January 1, 2015): . 219
5.2 Version 3.0.1 (Aug 5, 2014): . 220
5.3 Version 3.0.0 (July 17, 2014): . 220
5.4 Version 2.2.0 (March 01, 2013): . 221
5.5 Version 2.1.0 (October 05, 2012): . 222

2

5.6 Version 2.0.0 (June 01, 2012): . 222
5.7 Version 1.1.4 (May 28, 2012): . 223
5.8 Version 1.1.3 (November 21, 2011): . 223
5.9 Version 1.1.2 (October 27, 2011) . 224
5.10 Version 1.1.1 (October 25, 2011) . 224
5.11 Version 1.1.0 (October 04, 2011) . 224
5.12 Version 1.0.0 (July 29, 2011) . 225

6 Developers 227
6.1 Lead Developers . 227
6.2 Contributors . 227

7 Bibliography 229

8 Indices and tables 231

Bibliography 233

Python Module Index 235

Index 237

3

CHAPTER
ONE

FRONTMATTER

1.1 About This Documentation

This document contains a user guide and automatically generated API documentation for QuTiP. A PDF version
of this text is available at the documentation page.

For more information see the QuTiP project web page.

Author P.D. Nation

Address Department of Physics, Korea University, Seongbuk-gu Seoul, 136-713 South Korea

Author J.R. Johansson

Address iTHES Research Group, RIKEN, Wako-shi Saitama, 351-0198 Japan

version 3.1.0

status Released (January 1, 2015)

copyright This documentation is licensed under the Creative Commons Attribution 3.0 Unported
License.

1.2 Citing This Project

If you find this project useful, then please cite:

J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP 2: A Python framework for the dynamics of open quantum
systems”, Comp. Phys. Comm. 184, 1234 (2013).

or

J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP: An open-source Python framework for the dynamics of open
quantum systems”, Comp. Phys. Comm. 183, 1760 (2012).

which may also be download from http://arxiv.org/abs/1211.6518 or http://arxiv.org/abs/1110.0573, respectively.

1.3 Funding

The development of QuTiP has been partially supported by the Japanese Society for the Promotion of Science
Foreign Postdoctoral Fellowship Program under grants P11202 (PDN) and P11501 (JRJ). Additional funding
comes from RIKEN, Kakenhi grant Nos. 2301202 (PDN), 2302501 (JRJ), and Korea University.

5

http://www.qutip.org/documentation.html
http://www.qutip.org
http://arxiv.org/abs/1211.6518
http://arxiv.org/abs/1110.0573

1.4 About QuTiP

Every quantum system encountered in the real world is an open quantum system. For although much care is
taken experimentally to eliminate the unwanted influence of external interactions, there remains, if ever so slight,
a coupling between the system of interest and the external world. In addition, any measurement performed on
the system necessarily involves coupling to the measuring device, therefore introducing an additional source of
external influence. Consequently, developing the necessary tools, both theoretical and numerical, to account
for the interactions between a system and its environment is an essential step in understanding the dynamics of
quantum systems.

In general, for all but the most basic of Hamiltonians, an analytical description of the system dynamics is
not possible, and one must resort to numerical simulations of the equations of motion. In absence of a quantum
computer, these simulations must be carried out using classical computing techniques, where the exponentially
increasing dimensionality of the underlying Hilbert space severely limits the size of system that can be efficiently
simulated. However, in many fields such as quantum optics, trapped ions, superconducting circuit devices, and
most recently nanomechanical systems, it is possible to design systems using a small number of effective oscil-
lator and spin components, excited by a limited number of quanta, that are amenable to classical simulation in a
truncated Hilbert space.

The Quantum Toolbox in Python, or QuTiP, is a fully open-source implementation of a framework written
in the Python programming language designed for simulating the open quantum dynamics for systems such as
those listed above. This framework distinguishes itself from the other available software solutions in providing
the following advantages:

• QuTiP relies entirely on open-source software. You are free to modify and use it as you wish with no
licensing fees or limitations.

• QuTiP is based on the Python scripting language, providing easy to read, fast code generation without the
need to compile after modification.

• The numerics underlying QuTiP are time-tested algorithms that run at C-code speeds, thanks to the Numpy
and Scipy libraries, and are based on many of the same algorithms used in propriety software.

• QuTiP allows for solving the dynamics of Hamiltonians with arbitrary time-dependence, including collapse
operators.

• Time-dependent problems can be automatically compiled into C-code at run-time for increased perfor-
mance.

• Takes advantage of the multiple processing cores found in essentially all modern computers.

• QuTiP was designed from the start to require a minimal learning curve for those users who have experience
using the popular quantum optics toolbox by Sze M. Tan.

• Includes the ability to create high-quality plots, and animations, using the excellent Matplotlib package.

For detailed information about new features of each release of QuTiP, see the Change Log.

1.5 Contributing to QuTiP

We welcome anyone who is interested in helping us make QuTiP the best package for simulating quantum systems.
Anyone who contributes will be duly recognized. Even small contributions are noted. See Contributors for a list of
people who have helped in one way or another. If you are interested, please drop us a line at the QuTiP discussion
group webpage.

6

http://numpy.scipy.org/
http://www.scipy.org/scipy
http://matplotlib.sourceforge.net/
http://groups.google.com/group/qutip.
http://groups.google.com/group/qutip.

CHAPTER
TWO

INSTALLATION

2.1 General Requirements

QuTiP depends on several open-source libraries for scientific computing in the Python programming language.
The following packages are currently required:

Package Version Details
Python 2.7+ Version 3.3+ is highly recommended.
Numpy 1.7+ Not tested on lower versions.
Scipy 0.14+ Lower versions have missing features.
Matplotlib 1.2.0+ Some plotting does not work on lower versions.
Cython 0.15+ Needed for compiling some time-dependent Hamiltonians.
GCC
Compiler

4.2+ Needed for compiling Cython files.

Fortran
Compiler

Fortran 90 Needed for compiling the optional Fortran-based Monte Carlo solver.

BLAS library 1.2+ Optional, Linux & Mac only. Needed for installing Fortran Monte Carlo
solver.

Mayavi 4.1+ Optional. Needed for using the Bloch3d class.
Python Headers 2.7+ Linux only. Needed for compiling Cython files.
LaTeX TexLive

2009+
Optional. Needed if using LaTeX in figures.

nose 1.1.2+ Optional. For running tests.
scikits.umfpack 5.2.0+ Optional. Faster (~2-5x) steady state calculations.

As of version 2.2, QuTiP includes an optional Fortran-based Monte Carlo solver that has some performance
benefit over the Python-based solver when simulating small systems. In order to install this package you must
have a Fortran compiler (for example gfortran) and BLAS development libraries. At present, these packages are
tested only on the Linux and OS X platforms.

2.2 Platform-independent installation

Often the easiest way is to install QuTiP is to use the Python package manager pip.

pip install qutip

Or, optionally, to also include the Fortran-based Monte Carlo solver:

pip install qutip --install-option=--with-f90mc

More detailed platform-dependent installation alternatives are given below.

2.3 Get the source code

Official releases of QuTiP are available from the download section on the project’s web pages

http://www.qutip.org/download.html

and the latest source code is available in our Github repository

http://github.com/qutip

7

http://www.pip-installer.org/
http://www.qutip.org/download.html
http://github.com/qutip

In general we recommend users to use the latest stable release of QuTiP, but if you are interested in helping
us out with development or wish to submit bug fixes, then use the latest development version from the Github
repository.

2.4 Installing from source

Installing QuTiP from source requires that all the dependencies are satisfied. The installation of these dependencies
is different on each platform, and detailed instructions for Linux (Ubuntu), Mac OS X and Windows are given
below.

Regardless of platform, to install QuTiP from the source code run:

sudo python setup.py install

To also include the optional Fortran Monte Carlo solver, run:

sudo python setup.py install --with-f90mc

On Windows, omit sudo from the commands given above.

2.5 Installation on Ubuntu Linux

Using QuTiP’s PPA

The easiest way to install QuTiP in Ubuntu (14.04 and later) is to use the QuTiP PPA

sudo add-apt-repository ppa:jrjohansson/qutip-releases
sudo apt-get update
sudo apt-get install python-qutip

A Python 3 version is also available, and can be installed using:

sudo apt-get install python3-qutip

With this method the most important dependencies are installed automatically, and when a new version of
QuTiP is released it can be upgraded through the standard package management system. In addition to the required
dependencies, it is also strongly recommended that you install the texlive-latex-extra package:

sudo apt-get install texlive-latex-extra

Manual installation of dependencies

First install the required dependencies using:

sudo apt-get install python-dev cython python-setuptools python-nose
sudo apt-get install python-numpy python-scipy python-matplotlib

Then install QuTiP from source following the instructions given above.
Alternatively (or additionally), to install a Python 3 environment, use:

sudo apt-get install python3-dev cython3 python3-setuptools python3-nose
sudo apt-get install python3-numpy python3-scipy python3-matplotlib

and then do the installation from source using python3 instead of python.
Optional, but recommended, dependencies can be installed using:

sudo apt-get install texlive-latex-extra # recommended for plotting
sudo apt-get install mayavi2 # optional, for Bloch3d only
sudo apt-get install libblas-dev # optional, for Fortran Monte Carlo solver
sudo apt-get install liblapack-dev # optional, for Fortran Monte Carlo solver
sudo apt-get install gfortran # optional, for Fortran Monte Carlo solver

8

2.6 Installation on Mac OS X (10.8+)

Setup Using Homebrew

The latest version of QuTiP can be quickly installed on OS X using Homebrew and the automated installation
shell scripts

Python 2.7 installation script

Python 3.4 installation script

Having downloaded the script corresponding to the version of Python you want to use, the installation script
can be run from the terminal using (replacing X with 2 or 3)

sh install_qutip_pyX.sh

The script will then install Homebrew and the required QuTiP dependencies before installing QuTiP itself
and running the built in test suite. Any errors in the homebrew configuration will be displayed at the end. Using
Python 2.7 or 3.4, the python commend-line and IPython interpreter can be run by calling python and ipython
or python3 and ipython3, respectively.

If you have installed other packages in the /usr/local/ directory, or have changed the permissions of any
of its sub-directories, then this script may fail to install all the necessary tools automatically.

Setup Using Macports

If you have not done so already, install the Apple Xcode developer tools from the Apple App Store. After instal-
lation, open Xcode and go to: Preferences -> Downloads, and install the ‘Command Line Tools’.

On the Mac OS, you can install the required libraries via MacPorts. After installation, the necessary “ports”
for QuTiP may be installed via (Replace ‘34’ with ‘27’ if you want Python 2.7)

sudo port install py34-scipy
sudo port install py34-matplotlib +latex
sudo port install py34-cython
sudo port install py34-ipython +notebook+parallel
sudo port install py34-pip

Now, we want to tell OS X which Python and iPython we are going to use

sudo port select python python34
sudo port select ipython ipython34
sudo port select pip pip34

We now want to set the macports compiler to the vanilla GCC version. From the command line type

port select gcc

which will bring up a list of installed compilers, such as

Available versions for gcc:
mp-gcc48
none (active)

We want to set the the compiler to the gcc4x compiler, where x is the highest number available, in this case
mp-gcc48 (the “mp-” does not matter). To do this type

sudo port select gcc mp-gcc48

Running port select again should give

Available versions for gcc:
mp-gcc48 (active)
none

To install QuTiP, run

9

http://brew.sh/
https://raw.github.com/qutip/qutip/master/mac/install_qutip_py2.sh
https://raw.github.com/qutip/qutip/master/mac/install_qutip_py3.sh
http://www.macports.org/MacPorts

sudo pip install qutip --install-option=--with-f90mc

Warning: Having both macports and homebrew installations on the same machine is not recommended, and
can lead to QuTiP installation problems.

Setup via SciPy Superpack

A third option is to install the required Python packages using the SciPy Superpack. Further information on
installing the superpack can be found on the SciPy Downloads page.

Anaconda CE Distribution

Finally, one can also use the Anaconda CE package to install all of QuTiP.

2.7 Installation on Windows

QuTiP is primarily developed for Unix-based platforms such as Linux an Mac OS X, but it can also be used on
Windows. We have limited experience and ability to help troubleshoot problems on Windows, but the following
installation steps have been reported to work:

1. Install the Python(X,Y) distribution (tested with version 2.7.3.1). Other Python distributions, such as En-
thought Python Distribution or Anaconda CE have also been reported to work.

2. When installing Python(x,y), explicitly select to include the Cython package in the installation. This pack-
age is not selected by default.

3. Add the following content to the file C:/Python27/Lib/distutils/distutils.cfg (or create the file if it does not
already exists):

[build]
compiler = mingw32

[build_ext]
compiler = mingw32

The directory where the distutils.cfg file should be placed might be different if you have installed the Python
environment in a different location than in the example above.

4. Obtain the QuTiP source code and installed it following the instructions given above.

Note: In some cases, to get the dynamic compilation of Cython code to work, it might be necessary to edit the
PATH variable and make sure that C:\MinGW32-xy\bin appears either first in the PATH list, or possibly right after
C:\Python27\Lib\site-packages\PyQt4. This is to make sure that the right version of the MinGW compiler is used
if more than one is installed (not uncommon under Windows, since many packages are distributed and installed
with their own version of all dependencies).

2.8 Optional Installation Options

UMFPACK Linear Solver

As of SciPy 0.14+, the umfpack linear solver routines for solving large-scale sparse linear systems have been
replaced due to licensing restrictions. The default method for all sparse linear problems is now the SuperLU
library. However, scipy still includes the ability to call the umfpack library via the scikits.umfpack module. In our
experience, the umfpack solver is 2-5x faster than the SuperLU routines, which is a very noticeable performance
increase when used for solving steady state solutions. We have an updated scikits.umfpack module available at
http://github.com/nonhermitian/umfpack that can be installed to have SciPy find and use the umfpack library.

10

http://fonnesbeck.github.com/ScipySuperpack/
http://www.scipy.org/Download
https://store.continuum.io/cshop/anaconda
http://code.google.com/p/pythonxy/
http://www.enthought.com/products/epd.php
http://www.enthought.com/products/epd.php
http://continuum.io/downloads.html
http://www.cise.ufl.edu/research/sparse/umfpack/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
https://github.com/nonhermitian/umfpack

Optimized BLAS Libraries

QuTiP is designed to take advantage of some of the optimized BLAS libraries that are available for NumPy.
At present, this includes the OPENBLAS and MKL libraries. If NumPy is built against these libraries, then
QuTiP will take advantage of the performance gained by using these optimized tools. As these libraries are multi-
threaded, you can change the number of threads used in these packages by adding:

>>> import os
>>> os.environ['OPENBLAS_NUM_THREADS'] = '4'
>>> os.environ['MKL_NUM_THREADS'] = '4'

at the top of your Python script files, or iPython notebooks, and then loading the QuTiP framework. If these
commands are not present, then QuTiP automatically sets the number of threads to one.

2.9 Verifying the Installation

QuTiP includes a collection of built-in test scripts to verify that an installation was successful. To run the suite
of tests scripts you must have the nose testing library. After installing QuTiP, leave the installation directory, run
Python (or iPython), and call:

>>> import qutip.testing as qt
>>> qt.run()

If successful, these tests indicate that all of the QuTiP functions are working properly. If any errors occur,
please check that you have installed all of the required modules. See the next section on how to check the installed
versions of the QuTiP dependencies. If these tests still fail, then head on over to the QuTiP Discussion Board and
post a message detailing your particular issue.

2.10 Checking Version Information using the About Function

QuTiP includes an “about” function for viewing information about QuTiP and the important dependencies installed
on your system. To view this information:

In [1]: from qutip import *

In [2]: about()

QuTiP: Quantum Toolbox in Python
Copyright (c) 2011 and later.
Paul D. Nation & Robert J. Johansson

QuTiP Version: 3.1.0
Numpy Version: 1.9.1
Scipy Version: 0.14.0
Cython Version: 0.21.1
Matplotlib Version: 1.4.2
Fortran mcsolver: True
scikits.umfpack: False
Python Version: 2.7.9
Platform Info: Darwin (x86_64)
Installation path: /opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/qutip

11

http://www.openblas.net/
http://software.intel.com/en-us/intel-mkl
http://groups.google.com/group/qutip

CHAPTER
THREE

USERS GUIDE

3.1 Guide Overview

The goal of this guide is to introduce you to the basic structures and functions that make up QuTiP. This guide
is divided up into several sections, each highlighting a specific set of functionalities. In combination with the
examples that can be found on the project web page http://qutip.org/tutorials.html, this guide should provide a
more or less complete overview. In addition, the API documentation for each function is located at the end of this
guide.

Organization

QuTiP is designed to be a general framework for solving quantum mechanics problems such as systems com-
posed of few-level quantum systems and harmonic oscillators. To this end, QuTiP is built from a large (and ever
growing) library of functions and classes; from qutip.states.basis to qutip.wigner. The general or-
ganization of QuTiP, highlighting the important API available to the user, is shown in the QuTiP tree-diagram of
user accessible functions and classes.

3.2 Basic Operations on Quantum Objects

First things first

Warning: Do not run QuTiP from the installation directory.

To load the qutip modules, we must first call the import statement:

In [1]: from qutip import *

that will load all of the user available functions. Often, we also need to import the Numpy and Matplotlib
libraries with:

In [2]: import numpy as np

Note that, in the rest of the documentation, functions are written using qutip.module.function() notation which
links to the corresponding function in the QuTiP API: Functions. However, in calling import *, we have already
loaded all of the QuTiP modules. Therefore, we will only need the function name and not the complete path when
calling the function from the interpreter prompt or a Python script.

The quantum object class

Introduction

The key difference between classical and quantum mechanics lies in the use of operators instead of numbers as
variables. Moreover, we need to specify state vectors and their properties. Therefore, in computing the dynamics
of quantum systems we need a data structure that is capable of encapsulating the properties of a quantum operator
and ket/bra vectors. The quantum object class, qutip.Qobj, accomplishes this using matrix representation.

To begin, let us create a blank Qobj:

13

http://qutip.org/tutorials.html

Figure 3.1: QuTiP tree-diagram of user accessible functions and classes.

In [3]: Qobj()
Out[3]:
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True
Qobj data =
[[0.]]

where we see the blank Qobj object with dimensions, shape, and data. Here the data corresponds to a 1x1-
dimensional matrix consisting of a single zero entry.

Hint: By convention, Class objects in Python such as Qobj() differ from functions in the use of a beginning
capital letter.

We can create a Qobj with a user defined data set by passing a list or array of data into the Qobj:

In [4]: Qobj([[1],[2],[3],[4],[5]])
Out[4]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[1.]
[2.]

14

[3.]
[4.]
[5.]]

In [5]: x = np.array([[1, 2, 3, 4, 5]])

In [6]: Qobj(x)
Out[6]:
Quantum object: dims = [[1], [5]], shape = [1, 5], type = bra
Qobj data =
[[1. 2. 3. 4. 5.]]

In [7]: r = np.random.rand(4, 4)

In [8]: Qobj(r)
Out[8]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
[[0.13271688 0.96498406 0.6217972 0.05120659]
[0.95073525 0.4422577 0.93436513 0.39684026]
[0.14249098 0.57866168 0.75444556 0.95474959]
[0.43023463 0.67188093 0.42813227 0.53413365]]

Notice how both the dims and shape change according to the input data. Although dims and shape appear to
have the same function, the difference will become quite clear in the section on tensor products and partial traces.

Note: If you are running QuTiP from a python script you must use the print function to view the Qobj attributes.

States and operators

Manually specifying the data for each quantum object is inefficient. Even more so when most objects correspond
to commonly used types such as the ladder operators of a harmonic oscillator, the Pauli spin operators for a two-
level system, or state vectors such as Fock states. Therefore, QuTiP includes predefined objects for a variety of
states:

States Command (#
means optional)

Inputs

Fock state ket vector basis(N,#m)/fock(N,#m)N = number of levels in Hilbert space, m = level
containing excitation (0 if no m given)

Fock density matrix (outer
product of basis)

fock_dm(N,#p) same as basis(N,m) / fock(N,m)

Coherent state coherent(N,alpha)alpha = complex number (eigenvalue) for requested
coherent state

Coherent density matrix
(outer product)

coherent_dm(N,alpha)same as coherent(N,alpha)

Thermal density matrix
(for n particles)

thermal_dm(N,n) n = particle number expectation value

and operators:

15

Operators Command (# means
optional)

Inputs

Identity qeye(N) N = number of levels in Hilbert space.
Lowering (destruction)
operator

destroy(N) same as above

Raising (creation)
operator

create(N) same as above

Number operator num(N) same as above
Single-mode
displacement operator

displace(N,alpha) N=number of levels in Hilbert space, alpha = complex
displacement amplitude.

Single-mode squeezing
operator

squeeze(N,sp) N=number of levels in Hilbert space, sp = squeezing
parameter.

Sigma-X sigmax()
Sigma-Y sigmay()
Sigma-Z sigmaz()
Sigma plus sigmap()
Sigma minus sigmam()
Higher spin operators jmat(j,#s) j = integer or half-integer representing spin, s = ‘x’, ‘y’,

‘z’, ‘+’, or ‘-‘
As an example, we give the output for a few of these functions:

In [9]: basis(5,3)
Out[9]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[0.]
[1.]
[0.]]

In [10]: coherent(5,0.5-0.5j)
Out[10]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.77880170+0.j]
[0.38939142-0.38939142j]
[0.00000000-0.27545895j]
[-0.07898617-0.07898617j]
[-0.04314271+0.j]]

In [11]: destroy(4)
Out[11]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
[[0. 1. 0. 0.]
[0. 0. 1.41421356 0.]
[0. 0. 0. 1.73205081]
[0. 0. 0. 0.]]

In [12]: sigmaz()
Out[12]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. -1.]]

In [13]: jmat(5/2.0,'+')
Out[13]:
Quantum object: dims = [[6], [6]], shape = [6, 6], type = oper, isherm = False
Qobj data =

16

[[0. 2.23606798 0. 0. 0. 0.]
[0. 0. 2.82842712 0. 0. 0.]
[0. 0. 0. 3. 0. 0.]
[0. 0. 0. 0. 2.82842712 0.]
[0. 0. 0. 0. 0. 2.23606798]
[0. 0. 0. 0. 0. 0.]]

Qobj attributes

We have seen that a quantum object has several internal attributes, such as data, dims, and shape. These can be
accessed in the following way:

In [14]: q = destroy(4)

In [15]: q.dims
Out[15]: [[4], [4]]

In [16]: q.shape
Out[16]: [4, 4]

In general, the attributes (properties) of a Qobj object (or any Python class) can be retrieved using the
Q.attribute notation. In addition to the attributes shown with the print function, the Qobj class also has the
following:

Property At-
tribute

Description

Data Q.data Matrix representing state or operator
Dimen-
sions

Q.dims List keeping track of shapes for individual components of a multipartite system (for
tensor products and partial traces).

Shape Q.shape Dimensions of underlying data matrix.
is Hermi-
tian?

Q.ishermIs the operator Hermitian or not?

Type Q.type Is object of type ‘ket, ‘bra’, ‘oper’, or ‘super’?

Figure 3.2: The Qobj Class viewed as a container for the properties need to characterize a quantum operator or
state vector.

For the destruction operator above:

In [17]: q.type
Out[17]: 'oper'

In [18]: q.isherm
Out[18]: False

17

In [19]: q.data
Out[19]:
<4x4 sparse matrix of type '<type 'numpy.complex128'>'

with 3 stored elements in Compressed Sparse Row format>

The data attribute returns a message stating that the data is a sparse matrix. All Qobj instances store
their data as a sparse matrix to save memory. To access the underlying dense matrix one needs to use the
qutip.Qobj.full function as described below.

Qobj Math

The rules for mathematical operations on Qobj instances are similar to standard matrix arithmetic:

In [20]: q = destroy(4)

In [21]: x = sigmax()

In [22]: q + 5
Out[22]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
[[5. 1. 0. 0.]
[0. 5. 1.41421356 0.]
[0. 0. 5. 1.73205081]
[0. 0. 0. 5.]]

In [23]: x * x
Out[23]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 1.]]

In [24]: q ** 3
Out[24]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
[[0. 0. 0. 2.44948974]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

In [25]: x / np.sqrt(2)
Out[25]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 0.70710678]
[0.70710678 0.]]

Of course, like matrices, multiplying two objects of incompatible shape throws an error:

In [26]: q * x

TypeError Traceback (most recent call last)
<ipython-input-26-c5138e004127> in <module>()
----> 1 q * x

/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/qutip/qobj.py in __mul__(self, other)
433
434 else:

--> 435 raise TypeError("Incompatible Qobj shapes")
436
437 elif isinstance(other, (list, np.ndarray)):

18

TypeError: Incompatible Qobj shapes

In addition, the logic operators is equal == and is not equal != are also supported.

Functions operating on Qobj class

Like attributes, the quantum object class has defined functions (methods) that operate on Qobj class instances.
For a general quantum object Q:

Function Command Description
Check
Hermicity

Q.check_herm() Check if quantum object is Hermitian

Conjugate Q.conj() Conjugate of quantum object.
Dagger
(adjoint)

Q.dag() Returns adjoint (dagger) of object.

Diagonal Q.diag() Returns the diagonal elements.
Eigenenergies Q.eigenenergies() Eigenenergies (values) of operator.
Eigenstates Q.eigenstates() Returns eigenvalues and eigenvectors.
Eliminate
States

Q.eliminate_states(inds)Returns quantum object with states in list inds removed.

Exponential Q.expm() Matrix exponential of operator.
Extract States Q.extract_states(inds) Qobj with states listed in inds only.
Full Q.full() Returns full (not sparse) array of Q’s data.
Groundstate Q.groundstate() Eigenval & eigket of Qobj groundstate.
Matrix
Element

Q.matrix_element(bra,ket)Matrix element <bra|Q|ket>

Norm Q.norm() Returns L2 norm for states, trace norm for operators.
Overlap Q.overlap(state) Overlap between current Qobj and a given state.
Partial Trace Q.ptrace(sel) Partial trace returning components selected using ‘sel’

parameter.
Permute Q.permute(order) Permutes the tensor structure of a composite object in the

given order.
Sqrt Q.sqrtm() Matrix sqrt of operator.
Tidyup Q.tidyup() Removes small elements from Qobj.
Trace Q.tr() Returns trace of quantum object.
Transform Q.transform(inpt) A basis transformation defined by matrix or list of kets

‘inpt’ .
Transpose Q.trans() Transpose of quantum object.
Unit Q.unit() Returns normalized (unit) vector Q/Q.norm().

In [27]: basis(5, 3)
Out[27]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[0.]
[1.]
[0.]]

In [28]: basis(5, 3).dag()
Out[28]:
Quantum object: dims = [[1], [5]], shape = [1, 5], type = bra
Qobj data =
[[0. 0. 0. 1. 0.]]

In [29]: coherent_dm(5, 1)
Out[29]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =

19

[[0.36791117 0.36774407 0.26105441 0.14620658 0.08826704]
[0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]
[0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]
[0.14620658 0.14614018 0.10374209 0.05810197 0.035077]
[0.08826704 0.08822695 0.06263061 0.035077 0.0211765]]

In [30]: coherent_dm(5, 1).diag()
Out[30]: array([0.36791117, 0.36757705, 0.18523331, 0.05810197, 0.0211765])

In [31]: coherent_dm(5, 1).full()
Out[31]:
array([[0.36791117+0.j, 0.36774407+0.j, 0.26105441+0.j, 0.14620658+0.j,

0.08826704+0.j],
[0.36774407+0.j, 0.36757705+0.j, 0.26093584+0.j, 0.14614018+0.j,
0.08822695+0.j],

[0.26105441+0.j, 0.26093584+0.j, 0.18523331+0.j, 0.10374209+0.j,
0.06263061+0.j],

[0.14620658+0.j, 0.14614018+0.j, 0.10374209+0.j, 0.05810197+0.j,
0.03507700+0.j],

[0.08826704+0.j, 0.08822695+0.j, 0.06263061+0.j, 0.03507700+0.j,
0.02117650+0.j]])

In [32]: coherent_dm(5, 1).norm()
Out[32]: 1.0

In [33]: coherent_dm(5, 1).sqrtm()
Out[33]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0.36791118 0.36774407 0.26105441 0.14620658 0.08826704]
[0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]
[0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]
[0.14620658 0.14614018 0.10374209 0.05810197 0.035077]
[0.08826704 0.08822695 0.06263061 0.035077 0.0211765]]

In [34]: coherent_dm(5, 1).tr()
Out[34]: 1.0

In [35]: (basis(4, 2) + basis(4, 1)).unit()
Out[35]:
Quantum object: dims = [[4], [1]], shape = [4, 1], type = ket
Qobj data =
[[0.]
[0.70710678]
[0.70710678]
[0.]]

3.3 Manipulating States and Operators

Introduction

In the previous guide section Basic Operations on Quantum Objects, we saw how to create states and operators,
using the functions built into QuTiP. In this portion of the guide, we will look at performing basic operations
with states and operators. For more detailed demonstrations on how to use and manipulate these objects, see the
examples on the tutorials web page.

State Vectors (kets or bras)

Here we begin by creating a Fock qutip.states.basis vacuum state vector |0⟩ with in a Hilbert space with
5 number states, from 0 to 4:

20

http://qutip.org/tutorials.html

In [1]: vac = basis(5, 0)

In [2]: vac
Out[2]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]
[0.]]

and then create a lowering operator (�̂�) corresponding to 5 number states using the
qutip.operators.destroy function:

In [3]: a = destroy(5)

In [4]: a
Out[4]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = False
Qobj data =
[[0. 1. 0. 0. 0.]
[0. 0. 1.41421356 0. 0.]
[0. 0. 0. 1.73205081 0.]
[0. 0. 0. 0. 2.]
[0. 0. 0. 0. 0.]]

Now lets apply the destruction operator to our vacuum state vac,

In [5]: a * vac
Out[5]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[0.]
[0.]
[0.]]

We see that, as expected, the vacuum is transformed to the zero vector. A more interesting example comes
from using the adjoint of the lowering operator, the raising operator �̂�†:

In [6]: a.dag() * vac
Out[6]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[1.]
[0.]
[0.]
[0.]]

The raising operator has in indeed raised the state vec from the vacuum to the |1⟩ state. Instead of using the dag-
ger Qobj.dag() method to raise the state, we could have also used the built in qutip.operators.create
function to make a raising operator:

In [7]: c = create(5)

In [8]: c * vac
Out[8]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]

21

[1.]
[0.]
[0.]
[0.]]

which does the same thing. We can raise the vacuum state more than once by successively apply the raising
operator:

In [9]: c * c * vac
Out[9]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[1.41421356]
[0.]
[0.]]

or just taking the square of the raising operator
(︀
�̂�†
)︀2

:

In [10]: c ** 2 * vac
Out[10]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[1.41421356]
[0.]
[0.]]

Applying the raising operator twice gives the expected
√
𝑛+ 1 dependence. We can use the product of 𝑐 * 𝑎

to also apply the number operator to the state vector vac:

In [11]: c * a * vac
Out[11]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[0.]
[0.]
[0.]]

or on the |1⟩ state:

In [12]: c * a * (c * vac)
Out[12]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[1.]
[0.]
[0.]
[0.]]

or the |2⟩ state:

In [13]: c * a * (c**2 * vac)
Out[13]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]

22

[2.82842712]
[0.]
[0.]]

Notice how in this last example, application of the number operator does not give the expected value 𝑛 = 2,
but rather 2

√
2. This is because this last state is not normalized to unity as 𝑐 |𝑛⟩ =

√
𝑛+ 1 |𝑛+ 1⟩. Therefore, we

should normalize our vector first:

In [14]: c * a * (c**2 * vac).unit()
Out[14]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[2.]
[0.]
[0.]]

Since we are giving a demonstration of using states and operators, we have done a lot more work than we
should have. For example, we do not need to operate on the vacuum state to generate a higher number Fock state.
Instead we can use the qutip.states.basis (or qutip.states.fock) function to directly obtain the
required state:

In [15]: ket = basis(5, 2)

In [16]: print(ket)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[1.]
[0.]
[0.]]

Notice how it is automatically normalized. We can also use the built in qutip.operators.num operator:

In [17]: n = num(5)

In [18]: print(n)
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 2. 0. 0.]
[0. 0. 0. 3. 0.]
[0. 0. 0. 0. 4.]]

Therefore, instead of c * a * (c ** 2 * vac).unit() we have:

In [19]: n * ket
Out[19]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.]
[2.]
[0.]
[0.]]

We can also create superpositions of states:

23

In [20]: ket = (basis(5, 0) + basis(5, 1)).unit()

In [21]: print(ket)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.70710678]
[0.70710678]
[0.]
[0.]
[0.]]

where we have used the qutip.Qobj.unitmethod to again normalize the state. Operating with the number
function again:

In [22]: n * ket
Out[22]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.]
[0.70710678]
[0.]
[0.]
[0.]]

We can also create coherent states and squeezed states by applying the qutip.operators.displace
and qutip.operators.squeeze functions to the vacuum state:

In [23]: vac = basis(5, 0)

In [24]: d = displace(5, 1j)

In [25]: s = squeeze(5, 0.25 + 0.25j)

In [26]: d * vac
Out[26]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.60655682+0.j]
[0.00000000+0.60628133j]
[-0.43038740+0.j]
[0.00000000-0.24104351j]
[0.14552147+0.j]]

In [27]: d * s * vac
Out[27]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.65893786+0.08139381j]
[0.10779462+0.51579735j]
[-0.37567217-0.01326853j]
[-0.02688063-0.23828775j]
[0.26352814+0.11512178j]]

Of course, displacing the vacuum gives a coherent state, which can also be generated using the built in
qutip.states.coherent function.

Density matrices

One of the main purpose of QuTiP is to explore the dynamics of open quantum systems, where the most general
state of a system is not longer a state vector, but rather a density matrix. Since operations on density matrices
operate identically to those of vectors, we will just briefly highlight creating and using these structures.

The simplest density matrix is created by forming the outer-product |𝜓⟩ ⟨𝜓| of a ket vector:

24

In [28]: ket = basis(5, 2)

In [29]: ket * ket.dag()
Out[29]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

A similar task can also be accomplished via the qutip.states.fock_dm or qutip.states.ket2dm
functions:

In [30]: fock_dm(5, 2)
Out[30]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

In [31]: ket2dm(ket)
Out[31]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

If we want to create a density matrix with equal classical probability of being found in the |2⟩ or |4⟩ number
states we can do the following:

In [32]: 0.5 * ket2dm(basis(5, 4)) + 0.5 * ket2dm(basis(5, 2))
Out[32]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0.5 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.5]]

or use 0.5 * fock_dm(5, 2) + 0.5 * fock_dm(5, 4). There are also several other built-
in functions for creating predefined density matrices, for example qutip.states.coherent_dm and
qutip.states.thermal_dm which create coherent state and thermal state density matrices, respectively.

In [33]: coherent_dm(5, 1.25)
Out[33]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0.20980701 0.26141096 0.23509686 0.15572585 0.13390765]
[0.26141096 0.32570738 0.29292109 0.19402805 0.16684347]
[0.23509686 0.29292109 0.26343512 0.17449684 0.1500487]
[0.15572585 0.19402805 0.17449684 0.11558499 0.09939079]
[0.13390765 0.16684347 0.1500487 0.09939079 0.0854655]]

25

In [34]: thermal_dm(5, 1.25)
Out[34]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0.46927974 0. 0. 0. 0.]
[0. 0.26071096 0. 0. 0.]
[0. 0. 0.14483942 0. 0.]
[0. 0. 0. 0.08046635 0.]
[0. 0. 0. 0. 0.04470353]]

QuTiP also provides a set of distance metrics for determining how close two density matrix dis-
tributions are to each other. Included are the trace distance qutip.metrics.tracedist, fidelity
qutip.metrics.fidelity, Hilbert-Schmidt distance qutip.metrics.hilbert_dist, Bures dis-
tance qutip.metrics.bures_dist, and Bures angle qutip.metrics.bures_angle.

In [35]: x = coherent_dm(5, 1.25)

In [36]: y = coherent_dm(5, 1.25j) # <-- note the 'j'

In [37]: z = thermal_dm(5, 0.125)

In [38]: fidelity(x, x)
Out[38]: 1.0000000208397526

In [39]: tracedist(y, y)
Out[39]: 0.0

We also know that for two pure states, the trace distance (T) and the fidelity (F) are related by 𝑇 =
√

1 − 𝐹 2.

In [40]: tracedist(y, x)
Out[40]: 0.9771565895267291

In [41]: np.sqrt(1 - fidelity(y, x) ** 2)
Out[41]: 0.97715657013508528

For a pure state and a mixed state, 1 − 𝐹 2 ≤ 𝑇 which can also be verified:

In [42]: 1 - fidelity(x, z) ** 2
Out[42]: 0.7782890497791632

In [43]: tracedist(x, z)
Out[43]: 0.8559028328862591

Qubit (two-level) systems

Having spent a fair amount of time on basis states that represent harmonic oscillator states, we now move on to
qubit, or two-level quantum systems (for example a spin-1/2). To create a state vector corresponding to a qubit
system, we use the same qutip.states.basis, or qutip.states.fock, function with only two levels:

In [44]: spin = basis(2, 0)

Now at this point one may ask how this state is different than that of a harmonic oscillator in the vacuum state
truncated to two energy levels?

In [45]: vac = basis(2, 0)

At this stage, there is no difference. This should not be surprising as we called the ex-
act same function twice. The difference between the two comes from the action of the spin op-
erators qutip.operators.sigmax, qutip.operators.sigmay, qutip.operators.sigmaz,
qutip.operators.sigmap, and qutip.operators.sigmam on these two-level states. For example,

26

if vac corresponds to the vacuum state of a harmonic oscillator, then, as we have already seen, we can use the
raising operator to get the |1⟩ state:

In [46]: vac
Out[46]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[1.]
[0.]]

In [47]: c = create(2)

In [48]: c * vac
Out[48]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[0.]
[1.]]

For a spin system, the operator analogous to the raising operator is the sigma-plus operator
qutip.operators.sigmap. Operating on the spin state gives:

In [49]: spin
Out[49]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[1.]
[0.]]

In [50]: sigmap() * spin
Out[50]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[0.]
[0.]]

Now we see the difference! The qutip.operators.sigmap operator acting on the spin state returns
the zero vector. Why is this? To see what happened, let us use the qutip.operators.sigmaz operator:

In [51]: sigmaz()
Out[51]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. -1.]]

In [52]: sigmaz() * spin
Out[52]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[1.]
[0.]]

In [53]: spin2 = basis(2, 1)

In [54]: spin2
Out[54]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[0.]
[1.]]

27

In [55]: sigmaz() * spin2
Out[55]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[0.]
[-1.]]

The answer is now apparent. Since the QuTiP qutip.operators.sigmaz function uses the standard
z-basis representation of the sigma-z spin operator, the spin state corresponds to the |↑⟩ state of a two-level spin
system while spin2 gives the |↓⟩ state. Therefore, in our previous example sigmap() * spin, we raised the
qubit state out of the truncated two-level Hilbert space resulting in the zero state.

While at first glance this convention might seem somewhat odd, it is in fact quite handy. For one, the spin
operators remain in the conventional form. Second, when the spin system is in the |↑⟩ state:

In [56]: sigmaz() * spin
Out[56]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[1.]
[0.]]

the non-zero component is the zeroth-element of the underlying matrix (remember that python uses c-indexing,
and matrices start with the zeroth element). The |↓⟩ state therefore has a non-zero entry in the first index position.
This corresponds nicely with the quantum information definitions of qubit states, where the excited |↑⟩ state is
label as |0⟩, and the |↓⟩ state by |1⟩.

If one wants to create spin operators for higher spin systems, then the qutip.operators.jmat function
comes in handy.

Expectation values

Some of the most important information about quantum systems comes from calculating the expectation value of
operators, both Hermitian and non-Hermitian, as the state or density matrix of the system varies in time. Therefore,
in this section we demonstrate the use of the qutip.expect function. To begin:

In [57]: vac = basis(5, 0)

In [58]: one = basis(5, 1)

In [59]: c = create(5)

In [60]: N = num(5)

In [61]: expect(N, vac)
Out[61]: 0.0

In [62]: expect(N, one)
Out[62]: 1.0

In [63]: coh = coherent_dm(5, 1.0j)

In [64]: expect(N, coh)
Out[64]: 0.9970555745806599

In [65]: cat = (basis(5, 4) + 1.0j * basis(5, 3)).unit()

In [66]: expect(c, cat)
Out[66]: 0.9999999999999998j

The qutip.expect function also accepts lists or arrays of state vectors or density matrices for the second
input:

28

In [67]: states = [(c**k * vac).unit() for k in range(5)] # must normalize

In [68]: expect(N, states)
Out[68]: array([0., 1., 2., 3., 4.])

In [69]: cat_list = [(basis(5, 4) + x * basis(5, 3)).unit()
....: for x in [0, 1.0j, -1.0, -1.0j]]
....:

In [70]: expect(c, cat_list)
Out[70]: array([0.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])

Notice how in this last example, all of the return values are complex numbers. This is because the
qutip.expect function looks to see whether the operator is Hermitian or not. If the operator is Hermitian,
than the output will always be real. In the case of non-Hermitian operators, the return values may be complex.
Therefore, the qutip.expect function will return an array of complex values for non-Hermitian operators
when the input is a list/array of states or density matrices.

Of course, the qutip.expect function works for spin states and operators:

In [71]: up = basis(2, 0)

In [72]: down = basis(2, 1)

In [73]: expect(sigmaz(), up)
Out[73]: 1.0

In [74]: expect(sigmaz(), down)
Out[74]: -1.0

as well as the composite objects discussed in the next section Using Tensor Products and Partial Traces:

In [75]: spin1 = basis(2, 0)

In [76]: spin2 = basis(2, 1)

In [77]: two_spins = tensor(spin1, spin2)

In [78]: sz1 = tensor(sigmaz(), qeye(2))

In [79]: sz2 = tensor(qeye(2), sigmaz())

In [80]: expect(sz1, two_spins)
Out[80]: 1.0

In [81]: expect(sz2, two_spins)
Out[81]: -1.0

Superoperators and Vectorized Operators

In addition to state vectors and density operators, QuTiP allows for representing maps that act linearly on density
operators using the Kraus, Liouville supermatrix and Choi matrix formalisms. This support is based on the cor-
respondance between linear operators acting on a Hilbert space, and vectors in two copies of that Hilbert space,
vec : ℒ(ℋ) → ℋ⊗ℋ [Hav03], [Wat13].

This isomorphism is implemented in QuTiP by the operator_to_vector and vector_to_operator
functions:

In [82]: psi = basis(2, 0)

In [83]: rho = ket2dm(psi)

29

In [84]: rho
Out[84]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 0.]]

In [85]: vec_rho = operator_to_vector(rho)

In [86]: vec_rho
Out[86]:
Quantum object: dims = [[[2], [2]], [1]], shape = [4, 1], type = operator-ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]]

In [87]: rho2 = vector_to_operator(vec_rho)

In [88]: (rho - rho2).norm()
Out[88]: 0.0

The type attribute indicates whether a quantum object is a vector corresponding to an operator
(operator-ket), or its Hermitian conjugate (operator-bra).

Note that QuTiP uses the column-stacking convention for the isomorphism between ℒ(ℋ) and ℋ⊗ℋ:

In [89]: import numpy as np

In [90]: A = Qobj(np.arange(4).reshape((2, 2)))

In [91]: A
Out[91]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
Qobj data =
[[0. 1.]
[2. 3.]]

In [92]: operator_to_vector(A)
Out[92]:
Quantum object: dims = [[[2], [2]], [1]], shape = [4, 1], type = operator-ket
Qobj data =
[[0.]
[2.]
[1.]
[3.]]

Since ℋ ⊗ ℋ is a vector space, linear maps on this space can be represented as matrices, often called su-
permatrices. Using the Qobj, the spre and spost functions, supermatrices corresponding to left- and right-
multiplication respectively can be quickly constructed.

In [93]: X = sigmax()

In [94]: S = spre(X) * spost(X.dag()) # Represents conjugation by X.

Note that this is done automatically by the to_super function when given type=’oper’ input.

In [95]: S2 = to_super(X)

In [96]: (S - S2).norm()
Out[96]: 0.0

Quantum objects representing superoperators are denoted by type=’super’:

30

In [97]: S
Out[97]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = [4, 4], type = super, isherm = True
Qobj data =
[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.]]

Information about superoperators, such as whether they represent completely positive maps, is exposed
through the iscp, istp and iscptp attributes:

In [98]: S.iscp, S.istp, S.iscptp
Out[98]: (True, True, True)

In addition, dynamical generators on this extended space, often called Liouvillian superoperators, can be cre-
ated using the liouvillian function. Each of these takes a Hamilonian along with a list of collapse operators,
and returns a type="super" object that can be exponentiated to find the superoperator for that evolution.

In [99]: H = 10 * sigmaz()

In [100]: c1 = destroy(2)

In [101]: L = liouvillian(H, [c1])

In [102]: L
Out[102]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = [4, 4], type = super, isherm = False
Qobj data =
[[0.0 +0.j 0.0 +0.j 0.0 +0.j 1.0 +0.j]
[0.0 +0.j -0.5+20.j 0.0 +0.j 0.0 +0.j]
[0.0 +0.j 0.0 +0.j -0.5-20.j 0.0 +0.j]
[0.0 +0.j 0.0 +0.j 0.0 +0.j -1.0 +0.j]]

In [103]: S = (12 * L).expm()

Once a superoperator has been obtained, it can be converted between the supermatrix, Kraus and Choi for-
malisms by using the to_super, to_kraus and to_choi functions. The superrep attribute keeps track of
what reprsentation is a Qobj is currently using.

In [104]: J = to_choi(S)

In [105]: J
Out[105]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = [4, 4], type = super, isherm = True, superrep = choi
Qobj data =
[[1.00000000e+00+0.j 0.00000000e+00+0.j 0.00000000e+00+0.j

8.07531120e-04-0.00234352j]
[0.00000000e+00+0.j 0.00000000e+00+0.j 0.00000000e+00+0.j

0.00000000e+00+0.j]
[0.00000000e+00+0.j 0.00000000e+00+0.j 9.99993856e-01+0.j

0.00000000e+00+0.j]
[8.07531120e-04+0.00234352j 0.00000000e+00+0.j 0.00000000e+00+0.j

6.14421235e-06+0.j]]

In [106]: K = to_kraus(J)

In [107]: K
Out[107]:
[Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
Qobj data =
[[1.00000000e+00 +1.34376978e-22j 0.00000000e+00 +0.00000000e+00j]

31

[0.00000000e+00 +0.00000000e+00j 8.07531120e-04 +2.34352424e-03j]],
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
Qobj data =
[[-1.11923759e-13 +6.02807402e-15j 0.00000000e+00 +0.00000000e+00j]
[0.00000000e+00 +0.00000000e+00j 1.70093171e-11 +4.18976706e-11j]],

Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 0.]],

Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
Qobj data =
[[0. 0.99999693]
[0. 0.]]]

3.4 Using Tensor Products and Partial Traces

Tensor products

To describe the states of multipartite quantum systems - such as two coupled qubits, a qubit coupled to an oscillator,
etc. - we need to expand the Hilbert space by taking the tensor product of the state vectors for each of the system
components. Similarly, the operators acting on the state vectors in the combined Hilbert space (describing the
coupled system) are formed by taking the tensor product of the individual operators.

In QuTiP the function qutip.tensor.tensor is used to accomplish this task. This function takes as
argument a collection:

>>> tensor(op1, op2, op3)

or a list:

>>> tensor([op1, op2, op3])

of state vectors or operators and returns a composite quantum object for the combined Hilbert space. The
function accepts an arbitray number of states or operators as argument. The type returned quantum object is the
same as that of the input(s).

For example, the state vector describing two qubits in their ground states is formed by taking the tensor product
of the two single-qubit ground state vectors:

In [1]: tensor(basis(2, 0), basis(2, 0))
Out[1]:
Quantum object: dims = [[2, 2], [1, 1]], shape = [4, 1], type = ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]]

or equivalently using the list format:

In [2]: tensor([basis(2, 0), basis(2, 0)])
Out[2]:
Quantum object: dims = [[2, 2], [1, 1]], shape = [4, 1], type = ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]]

This is straightforward to generalize to more qubits by adding more component state vectors in the argument
list to the qutip.tensor.tensor function, as illustrated in the following example:

32

In [3]: tensor((basis(2, 0) + basis(2, 1)).unit(),
...: (basis(2, 0) + basis(2, 1)).unit(), basis(2, 0))
...:

Out[3]:
Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = [8, 1], type = ket
Qobj data =
[[0.5]
[0.]
[0.5]
[0.]
[0.5]
[0.]
[0.5]
[0.]]

This state is slightly more complicated, describing two qubits in a superposition between the up and down
states, while the third qubit is in its ground state.

To construct operators that act on an extended Hilbert space of a combined system, we similarly pass a list
of operators for each component system to the qutip.tensor.tensor function. For example, to form the
operator that represents the simultaneous action of the 𝜎𝑥 operator on two qubits:

In [4]: tensor(sigmax(), sigmax())
Out[4]:
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.]]

To create operators in a combined Hilbert space that only act only on a single component, we take the tensor
product of the operator acting on the subspace of interest, with the identity operators corresponding to the com-
ponents that are to be unchanged. For example, the operator that represents 𝜎𝑧 on the first qubit in a two-qubit
system, while leaving the second qubit unaffected:

In [5]: tensor(sigmaz(), identity(2))
Out[5]:
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. -1. 0.]
[0. 0. 0. -1.]]

Example: Constructing composite Hamiltonians

The qutip.tensor.tensor function is extensively used when constructing Hamiltonians for composite sys-
tems. Here we’ll look at some simple examples.

Two coupled qubits

First, let’s consider a system of two coupled qubits. Assume that both qubit has equal energy splitting, and that
the qubits are coupled through a 𝜎𝑥 ⊗ 𝜎𝑥 interaction with strength g = 0.05 (in units where the bare qubit energy
splitting is unity). The Hamiltonian describing this system is:

In [6]: H = tensor(sigmaz(), identity(2)) + tensor(identity(2),
...: sigmaz()) + 0.05 * tensor(sigmax(), sigmax())
...:

In [7]: H
Out[7]:

33

Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[2. 0. 0. 0.05]
[0. 0. 0.05 0.]
[0. 0.05 0. 0.]
[0.05 0. 0. -2.]]

Three coupled qubits

The two-qubit example is easily generalized to three coupled qubits:

In [8]: H = (tensor(sigmaz(), identity(2), identity(2)) +
...: tensor(identity(2), sigmaz(), identity(2)) +
...: tensor(identity(2), identity(2), sigmaz()) +
...: 0.5 * tensor(sigmax(), sigmax(), identity(2)) +
...: 0.25 * tensor(identity(2), sigmax(), sigmax()))
...:

In [9]: H
Out[9]:
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = [8, 8], type = oper, isherm = True
Qobj data =
[[3. 0. 0. 0.25 0. 0. 0.5 0.]
[0. 1. 0.25 0. 0. 0. 0. 0.5]
[0. 0.25 1. 0. 0.5 0. 0. 0.]
[0.25 0. 0. -1. 0. 0.5 0. 0.]
[0. 0. 0.5 0. 1. 0. 0. 0.25]
[0. 0. 0. 0.5 0. -1. 0.25 0.]
[0.5 0. 0. 0. 0. 0.25 -1. 0.]
[0. 0.5 0. 0. 0.25 0. 0. -3.]]

A two-level system coupled to a cavity: The Jaynes-Cummings model

The simplest possible quantum mechanical description for light-matter interaction is encapsulated in the Jaynes-
Cummings model, which describes the coupling between a two-level atom and a single-mode electromagnetic field
(a cavity mode). Denoting the energy splitting of the atom and cavity omega_a and omega_c, respectively, and
the atom-cavity interaction strength g, the Jaynes-Cumming Hamiltonian can be constructed as:

In [10]: N = 10

In [11]: omega_a = 1.0

In [12]: omega_c = 1.25

In [13]: g = 0.05

In [14]: a = tensor(identity(2), destroy(N))

In [15]: sm = tensor(destroy(2), identity(N))

In [16]: sz = tensor(sigmaz(), identity(N))

In [17]: H = 0.5 * omega_a * sz + omega_c * a.dag() * a + g * (a.dag() * sm + a * sm.dag())

Here N is the number of Fock states included in the cavity mode.

Partial trace

The partial trace is an operation that reduces the dimension of a Hilbert space by eliminating some degrees of
freedom by averaging (tracing). In this sense it is therefore the converse of the tensor product. It is useful when one
is interested in only a part of a coupled quantum system. For open quantum systems, this typically involves tracing

34

over the environment leaving only the system of interest. In QuTiP the class method qutip.Qobj.ptrace is
used to take partial traces. qutip.Qobj.ptrace acts on the qutip.Qobj instance for which it is called, and
it takes one argument sel, which is a list of integers that mark the component systems that should be kept. All
other components are traced out.

For example, the density matrix describing a single qubit obtained from a coupled two-qubit system is obtained
via:

In [18]: psi = tensor(basis(2, 0), basis(2, 1))

In [19]: psi.ptrace(0)
Out[19]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 0.]]

In [20]: psi.ptrace(1)
Out[20]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 1.]]

Note that the partial trace always results in a density matrix (mixed state), regardless of whether the composite
system is a pure state (described by a state vector) or a mixed state (described by a density matrix):

In [21]: psi = tensor((basis(2, 0) + basis(2, 1)).unit(), basis(2, 0))

In [22]: psi
Out[22]:
Quantum object: dims = [[2, 2], [1, 1]], shape = [4, 1], type = ket
Qobj data =
[[0.70710678]
[0.]
[0.70710678]
[0.]]

In [23]: psi.ptrace(0)
Out[23]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0.5 0.5]
[0.5 0.5]]

In [24]: rho = tensor(ket2dm((basis(2, 0) + basis(2, 1)).unit()), fock_dm(2, 0))

In [25]: rho
Out[25]:
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[0.5 0. 0.5 0.]
[0. 0. 0. 0.]
[0.5 0. 0.5 0.]
[0. 0. 0. 0.]]

In [26]: rho.ptrace(0)
Out[26]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0.5 0.5]
[0.5 0.5]]

35

Superoperators and Tensor Manipulations

As described in Superoperators and Vectorized Operators, superoperators are operators that act on Liouville
space, the vectorspace of linear operators. Superoperators can be represented using the isomorphism vec :
ℒ(ℋ) → ℋ ⊗ ℋ [Hav03], [Wat13]. To represent superoperators acting on ℒ(ℋ1 ⊗ ℋ2) thus takes some ten-
sor rearrangement to get the desired ordering ℋ1 ⊗ℋ2 ⊗ℋ1 ⊗ℋ2.

In particular, this means that qutip.tensor does not act as one might expect on the results of
qutip.to_super:

In [27]: A = qeye([2])

In [28]: B = qeye([3])

In [29]: to_super(tensor(A, B)).dims
Out[29]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]

In [30]: tensor(to_super(A), to_super(B)).dims
Out[30]: [[[2], [2], [3], [3]], [[2], [2], [3], [3]]]

In the former case, the result correctly has four copies of the compound index with dims [2, 3]. In the latter
case, however, each of the Hilbert space indices is listed independently and in the wrong order.

The qutip.super_tensor function performs the needed rearrangement, providing the most direct
analog to qutip.tensor on the underlying Hilbert space. In particular, for any two type="oper"
Qobjs A and B, to_super(tensor(A, B)) == super_tensor(to_super(A), to_super(B))
and operator_to_vector(tensor(A, B)) == super_tensor(operator_to_vector(A),
operator_to_vector(B)). Returning to the previous example:

In [31]: super_tensor(to_super(A), to_super(B)).dims
Out[31]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]

The qutip.composite function automatically switches between qutip.tensor and
qutip.super_tensor based on the type of its arguments, such that composite(A, B) returns
an appropriate Qobj to represent the composition of two systems.

In [32]: composite(A, B).dims
Out[32]: [[2, 3], [2, 3]]

In [33]: composite(to_super(A), to_super(B)).dims
Out[33]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]

QuTiP also allows more general tensor manipulations that are useful for converting between superoperator
representations [WBC11]. In particular, the tensor_contract function allows for contracting one or more
pairs of indices. As detailed in the channel contraction tutorial, this can be used to find superoperators that
represent partial trace maps. Using this functionality, we can construct some quite exotic maps, such as a map
from 3 × 3 operators to 2 × 2 operators:

In [34]: tensor_contract(composite(to_super(A), to_super(B)), (1, 3), (4, 6)).dims
Out[34]: [[[2], [2]], [[3], [3]]]

3.5 Time Evolution and Quantum System Dynamics

Dynamics Simulation Results

Important: In QuTiP 2, the results from all of the dynamics solvers are returned as Odedata objects. This unified
and significantly simplified postprocessing of simulation results from different solvers, compared to QuTiP 1.
However, this change also results in the loss of backward compatibility with QuTiP version 1.x. In QuTiP 3, the
Odedata class has been renamed to Result, but for backwards compatibility an alias between Result and Odedata
is provided.

36

http://nbviewer.ipython.org/github/qutip/qutip-notebooks/blob/master/examples/example-superop-contract.ipynb

The solver.Result Class

Before embarking on simulating the dynamics of quantum systems, we will first look at the data structure used
for returning the simulation results to the user. This object is a qutip.solver.Result class that stores all
the crucial data needed for analyzing and plotting the results of a simulation. Like the qutip.Qobj class, the
Result class has a collection of properties for storing information. However, in contrast to the Qobj class, this
structure contains no methods, and is therefore nothing but a container object. A generic Result object result
contains the following properties for storing simulation data:

Property Description
result.solver String indicating which solver was used to generate the data.
result.times List/array of times at which simulation data is calculated.
result.expect List/array of expectation values, if requested.
result.states List/array of state vectors/density matrices calculated at times, if requested.
result.num_expectThe number of expectation value operators in the simulation.
result.num_collapseThe number of collapse operators in the simulation.
result.ntraj Number of Monte Carlo trajectories run.
result.col_times Times at which state collapse occurred. Only for Monte Carlo solver.
result.col_which Which collapse operator was responsible for each collapse in in col_times. Only

used by Monte Carlo solver.
result.seeds Seeds used in generating random numbers for Monte Carlo solver.

Accessing Result Data

To understand how to access the data in a Result object we will use an example as a guide, although we do not
worry about the simulation details at this stage. Like all solvers, the Monte Carlo solver used in this example
returns an Result object, here called simply result. To see what is contained inside result we can use the
print function:

>>> print(result)
Result object with mcsolve data.

expect = True
num_expect = 2, num_collapse = 2, ntraj = 500

The first line tells us that this data object was generated from the Monte Carlo solver mcsolve (discussed in
Monte Carlo Solver). The next line (not the --- line of course) indicates that this object contains expectation value
data. Finally, the last line gives the number of expectation value and collapse operators used in the simulation,
along with the number of Monte Carlo trajectories run. Note that the number of trajectories ntraj is only
displayed when using the Monte Carlo solver.

Now we have all the information needed to analyze the simulation results. To access the data for the two
expectation values one can do:

>>> expt0 = result.expect[0]
>>> expt1 = result.expect[1]

Recall that Python uses C-style indexing that begins with zero (i.e., [0] => 1st collapse operator data). Together
with the array of times at which these expectation values are calculated:

>>> times = result.times

we can plot the resulting expectation values:

>>> plot(times, expt0, times, expt1)
>>> show()

State vectors, or density matrices, as well as col_times and col_which, are accessed in a similar manner,
although typically one does not need an index (i.e [0]) since there is only one list for each of these components.
The one exception to this rule is if you choose to output state vectors from the Monte Carlo solver, in which case
there are ntraj number of state vector arrays.

37

Saving and Loading Result Objects

The main advantage in using the Result class as a data storage object comes from the simplicity in which sim-
ulation data can be stored and later retrieved. The qutip.fileio.qsave and qutip.fileio.qload
functions are designed for this task. To begin, let us save the data object from the previous section into a file
called “cavity+qubit-data” in the current working directory by calling:

>>> qsave(result, 'cavity+qubit-data')

All of the data results are then stored in a single file of the same name with a ”.qu” extension. Therefore,
everything needed to later this data is stored in a single file. Loading the file is just as easy as saving:

>>> stored_result = qload('cavity+qubit-data')
Loaded Result object:
Result object with mcsolve data.

expect = True
num_expect = 2, num_collapse = 2, ntraj = 500

where stored_result is the new name of the Result object. We can then extract the data and plot in the
same manner as before:

expt0 = stored_result.expect[0]
expt1 = stored_result.expect[1]
times = stored_result.times
plot(times, expt0, times, expt1)
show()

Also see Saving QuTiP Objects and Data Sets for more information on saving quantum objects, as well as
arrays for use in other programs.

Lindblad Master Equation Solver

Unitary evolution

The dynamics of a closed (pure) quantum system is governed by the Schrödinger equation

𝑖ℎ̄
𝜕

𝜕𝑡
Ψ = �̂�Ψ, (3.1)

where Ψ is the wave function, �̂� the Hamiltonian, and ℎ̄ is Planck’s constant. In general, the Schrödinger equation
is a partial differential equation (PDE) where both Ψ and �̂� are functions of space and time. For computational
purposes it is useful to expand the PDE in a set of basis functions that span the Hilbert space of the Hamiltonian,
and to write the equation in matrix and vector form

𝑖ℎ̄
𝑑

𝑑𝑡
|𝜓⟩ = 𝐻 |𝜓⟩

where |𝜓⟩ is the state vector and 𝐻 is the matrix representation of the Hamiltonian. This matrix equation can, in
principle, be solved by diagonalizing the Hamiltonian matrix 𝐻 . In practice, however, it is difficult to perform
this diagonalization unless the size of the Hilbert space (dimension of the matrix 𝐻) is small. Analytically, it is
a formidable task to calculate the dynamics for systems with more than two states. If, in addition, we consider
dissipation due to the inevitable interaction with a surrounding environment, the computational complexity grows
even larger, and we have to resort to numerical calculations in all realistic situations. This illustrates the importance
of numerical calculations in describing the dynamics of open quantum systems, and the need for efficient and
accessible tools for this task.

The Schrödinger equation, which governs the time-evolution of closed quantum systems, is defined by its
Hamiltonian and state vector. In the previous section, Using Tensor Products and Partial Traces, we showed how
Hamiltonians and state vectors are constructed in QuTiP. Given a Hamiltonian, we can calculate the unitary (non-
dissipative) time-evolution of an arbitrary state vector |𝜓0⟩ (psi0) using the QuTiP function qutip.mesolve.
It evolves the state vector and evaluates the expectation values for a set of operators expt_ops at the points
in time in the list times, using an ordinary differential equation solver. Alternatively, we can use the function
qutip.essolve, which uses the exponential-series technique to calculate the time evolution of a system. The

38

qutip.mesolve and qutip.essolve functions take the same arguments and it is therefore easy switch
between the two solvers.

For example, the time evolution of a quantum spin-1/2 system with tunneling rate 0.1 that initially is in the up
state is calculated, and the expectation values of the 𝜎𝑧 operator evaluated, with the following code

In [1]: H = 2 * np.pi * 0.1 * sigmax()

In [2]: psi0 = basis(2, 0)

In [3]: times = np.linspace(0.0, 10.0, 20.0)

In [4]: result = mesolve(H, psi0, times, [], [sigmaz()])

The brackets in the fourth argument is an empty list of collapse operators, since we consider unitary evolution
in this example. See the next section for examples on how dissipation is included by defining a list of collapse
operators.

The function returns an instance of qutip.solver.Result, as described in the previous section Dynamics
Simulation Results. The attribute expect in result is a list of expectation values for the operators that are
included in the list in the fifth argument. Adding operators to this list results in a larger output list returned by the
function (one array of numbers, corresponding to the times in times, for each operator)

In [5]: result = mesolve(H, psi0, times, [], [sigmaz(), sigmay()])

In [6]: result.expect
Out[6]:
[array([1. , 0.78914057, 0.24548559, -0.40169513, -0.8794735 ,

-0.98636142, -0.67728219, -0.08258023, 0.54694721, 0.94581685,
0.94581769, 0.54694945, -0.08257765, -0.67728015, -0.98636097,
-0.87947476, -0.40169736, 0.24548326, 0.78913896, 1.]),

array([0.00000000e+00, -6.14212640e-01, -9.69400240e-01,
-9.15773457e-01, -4.75947849e-01, 1.64593874e-01,
7.35723339e-01, 9.96584419e-01, 8.37167094e-01,
3.24700624e-01, -3.24698160e-01, -8.37165632e-01,

-9.96584633e-01, -7.35725221e-01, -1.64596567e-01,
4.75945525e-01, 9.15772479e-01, 9.69400830e-01,
6.14214701e-01, 2.77159958e-06])]

The resulting list of expectation values can easily be visualized using matplotlib’s plotting functions:

In [7]: H = 2 * np.pi * 0.1 * sigmax()

In [8]: psi0 = basis(2, 0)

In [9]: times = np.linspace(0.0, 10.0, 100)

In [10]: result = mesolve(H, psi0, times, [], [sigmaz(), sigmay()])

In [11]: fig, ax = subplots()

In [12]: ax.plot(result.times, result.expect[0]);

In [13]: ax.plot(result.times, result.expect[1]);

In [14]: ax.set_xlabel('Time');

In [15]: ax.set_ylabel('Expectation values');

In [16]: ax.legend(("Sigma-Z", "Sigma-Y"));

In [17]: show()

39

If an empty list of operators is passed as fifth parameter, the qutip.mesolve function returns a
qutip.solver.Result instance that contains a list of state vectors for the times specified in times

In [18]: times = [0.0, 1.0]

In [19]: result = mesolve(H, psi0, times, [], [])

In [20]: result.states
Out[20]:
[Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[1.]
[0.]], Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket

Qobj data =
[[0.80901699+0.j]
[0.00000000-0.58778526j]]]

Non-unitary evolution

While the evolution of the state vector in a closed quantum system is deterministic, open quantum systems are
stochastic in nature. The effect of an environment on the system of interest is to induce stochastic transitions
between energy levels, and to introduce uncertainty in the phase difference between states of the system. The
state of an open quantum system is therefore described in terms of ensemble averaged states using the density
matrix formalism. A density matrix 𝜌 describes a probability distribution of quantum states |𝜓𝑛⟩, in a matrix
representation 𝜌 =

∑︀
𝑛 𝑝𝑛 |𝜓𝑛⟩ ⟨𝜓𝑛|, where 𝑝𝑛 is the classical probability that the system is in the quantum state

|𝜓𝑛⟩. The time evolution of a density matrix 𝜌 is the topic of the remaining portions of this section.

The Lindblad Master equation

The standard approach for deriving the equations of motion for a system interacting with its environment is to
expand the scope of the system to include the environment. The combined quantum system is then closed, and its
evolution is governed by the von Neumann equation

�̇�tot(𝑡) = − 𝑖

ℎ̄
[𝐻tot, 𝜌tot(𝑡)], (3.2)

40

the equivalent of the Schrödinger equation (3.1) in the density matrix formalism. Here, the total Hamiltonian

𝐻tot = 𝐻sys +𝐻env +𝐻int,

includes the original system Hamiltonian𝐻sys, the Hamiltonian for the environment𝐻env, and a term representing
the interaction between the system and its environment 𝐻int. Since we are only interested in the dynamics of the
system, we can at this point perform a partial trace over the environmental degrees of freedom in Eq. (3.2), and
thereby obtain a master equation for the motion of the original system density matrix. The most general trace-
preserving and completely positive form of this evolution is the Lindblad master equation for the reduced density
matrix 𝜌 = Trenv[𝜌tot]

�̇�(𝑡) = − 𝑖

ℎ̄
[𝐻(𝑡), 𝜌(𝑡)] +

∑︁
𝑛

1

2

[︀
2𝐶𝑛𝜌(𝑡)𝐶+

𝑛 − 𝜌(𝑡)𝐶+
𝑛 𝐶𝑛 − 𝐶+

𝑛 𝐶𝑛𝜌(𝑡)
]︀

(3.3)

where the 𝐶𝑛 =
√
𝛾𝑛𝐴𝑛 are collapse operators, and 𝐴𝑛 are the operators through which the environment couples

to the system in 𝐻int, and 𝛾𝑛 are the corresponding rates. The derivation of Eq. (3.3) may be found in several
sources, and will not be reproduced here. Instead, we emphasize the approximations that are required to arrive at
the master equation in the form of Eq. (3.3) from physical arguments, and hence perform a calculation in QuTiP:

• Separability: At 𝑡 = 0 there are no correlations between the system and its environment such that the total
density matrix can be written as a tensor product 𝜌𝐼tot(0) = 𝜌𝐼(0) ⊗ 𝜌𝐼env(0).

• Born approximation: Requires: (1) that the state of the environment does not significantly change as a
result of the interaction with the system; (2) The system and the environment remain separable throughout
the evolution. These assumptions are justified if the interaction is weak, and if the environment is much
larger than the system. In summary, 𝜌tot(𝑡) ≈ 𝜌(𝑡) ⊗ 𝜌env.

• Markov approximation The time-scale of decay for the environment 𝜏env is much shorter than the smallest
time-scale of the system dynamics 𝜏sys ≫ 𝜏env. This approximation is often deemed a “short-memory
environment” as it requires that environmental correlation functions decay on a time-scale fast compared to
those of the system.

• Secular approximation Stipulates that elements in the master equation corresponding to transition frequen-
cies satisfy |𝜔𝑎𝑏 − 𝜔𝑐𝑑| ≪ 1/𝜏sys, i.e., all fast rotating terms in the interaction picture can be neglected. It
also ignores terms that lead to a small renormalization of the system energy levels. This approximation is
not strictly necessary for all master-equation formalisms (e.g., the Block-Redfield master equation), but it is
required for arriving at the Lindblad form (3.3) which is used in qutip.mesolve.

For systems with environments satisfying the conditions outlined above, the Lindblad master equation (3.3)
governs the time-evolution of the system density matrix, giving an ensemble average of the system dynamics. In
order to ensure that these approximations are not violated, it is important that the decay rates 𝛾𝑛 be smaller than the
minimum energy splitting in the system Hamiltonian. Situations that demand special attention therefore include,
for example, systems strongly coupled to their environment, and systems with degenerate or nearly degenerate
energy levels.

For non-unitary evolution of a quantum systems, i.e., evolution that includes incoherent processes such as
relaxation and dephasing, it is common to use master equations. In QuTiP, the same function (qutip.mesolve)
is used for evolution both according to the Schrödinger equation and to the master equation, even though these
two equations of motion are very different. The qutip.mesolve function automatically determines if it is
sufficient to use the Schrödinger equation (if no collapse operators were given) or if it has to use the master
equation (if collapse operators were given). Note that to calculate the time evolution according to the Schrödinger
equation is easier and much faster (for large systems) than using the master equation, so if possible the solver will
fall back on using the Schrödinger equation.

What is new in the master equation compared to the Schrödinger equation are processes that describe dissi-
pation in the quantum system due to its interaction with an environment. These environmental interactions are
defined by the operators through which the system couples to the environment, and rates that describe the strength
of the processes.

In QuTiP, the product of the square root of the rate and the operator that describe the dissipation process
is called a collapse operator. A list of collapse operators (c_ops) is passed as the fourth argument to the
qutip.mesolve function in order to define the dissipation processes in the master equation. When the c_ops
isn’t empty, the qutip.mesolve function will use the master equation instead of the unitary Schrödinger equa-
tion.

41

Using the example with the spin dynamics from the previous section, we can easily add a relaxation pro-
cess (describing the dissipation of energy from the spin to its environment), by adding np.sqrt(0.05) *
sigmax() to the previously empty list in the fourth parameter to the qutip.mesolve function:

In [21]: times = np.linspace(0.0, 10.0, 100)

In [22]: result = mesolve(H, psi0, times, [np.sqrt(0.05) * sigmax()], [sigmaz(), sigmay()])

In [23]: fig, ax = subplots()

In [24]: ax.plot(times, result.expect[0]);

In [25]: ax.plot(times, result.expect[1]);

In [26]: ax.set_xlabel('Time');

In [27]: ax.set_ylabel('Expectation values');

In [28]: ax.legend(("Sigma-Z", "Sigma-Y"));

In [29]: show(fig)

Here, 0.05 is the rate and the operator 𝜎𝑥 (qutip.operators.sigmax) describes the dissipation process.
Now a slightly more complex example: Consider a two-level atom coupled to a leaky single-mode cavity

through a dipole-type interaction, which supports a coherent exchange of quanta between the two systems. If the
atom initially is in its groundstate and the cavity in a 5-photon Fock state, the dynamics is calculated with the lines
following code

In [30]: times = np.linspace(0.0, 10.0, 200)

In [31]: psi0 = tensor(fock(2,0), fock(10, 5))

In [32]: a = tensor(qeye(2), destroy(10))

In [33]: sm = tensor(destroy(2), qeye(10))

In [34]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + \
....: 2 * np.pi * 0.25 * (sm * a.dag() + sm.dag() * a)

42

....:

In [35]: result = mesolve(H, psi0, times, [np.sqrt(0.1)*a], [a.dag()*a, sm.dag()*sm])

In [36]: figure()
Out[36]: <matplotlib.figure.Figure at 0x107ea3d50>

In [37]: plot(times, result.expect[0])
Out[37]: [<matplotlib.lines.Line2D at 0x10d300450>]

In [38]: plot(times, result.expect[1])
Out[38]: [<matplotlib.lines.Line2D at 0x10d300c90>]

In [39]: xlabel('Time')
Out[39]: <matplotlib.text.Text at 0x10d28d9d0>

In [40]: ylabel('Expectation values')
Out[40]: <matplotlib.text.Text at 0x10d2a16d0>

In [41]: legend(("cavity photon number", "atom excitation probability"))
Out[41]: <matplotlib.legend.Legend at 0x10d300b10>

In [42]: show()

Monte Carlo Solver

Introduction

Where as the density matrix formalism describes the ensemble average over many identical realizations of a quan-
tum system, the Monte Carlo (MC), or quantum-jump approach to wave function evolution, allows for simulating
an individual realization of the system dynamics. Here, the environment is continuously monitored, resulting in a
series of quantum jumps in the system wave function, conditioned on the increase in information gained about the
state of the system via the environmental measurements. In general, this evolution is governed by the Schrödinger
equation with a non-Hermitian effective Hamiltonian

𝐻eff = 𝐻sys −
𝑖ℎ̄

2

∑︁
𝑖

𝐶+
𝑛 𝐶𝑛, (3.4)

43

where again, the 𝐶𝑛 are collapse operators, each corresponding to a separate irreversible process with rate 𝛾𝑛.
Here, the strictly negative non-Hermitian portion of Eq. (3.4) gives rise to a reduction in the norm of the wave
function, that to first-order in a small time 𝛿𝑡, is given by ⟨𝜓(𝑡+ 𝛿𝑡)|𝜓(𝑡+ 𝛿𝑡)⟩ = 1 − 𝛿𝑝 where

𝛿𝑝 = 𝛿𝑡
∑︁
𝑛

⟨︀
𝜓(𝑡)|𝐶+

𝑛 𝐶𝑛|𝜓(𝑡)
⟩︀
, (3.5)

and 𝛿𝑡 is such that 𝛿𝑝 ≪ 1. With a probability of remaining in the state |𝜓(𝑡+ 𝛿𝑡)⟩ given by 1 − 𝛿𝑝, the
corresponding quantum jump probability is thus Eq. (3.5). If the environmental measurements register a quantum
jump, say via the emission of a photon into the environment, or a change in the spin of a quantum dot, the wave
function undergoes a jump into a state defined by projecting |𝜓(𝑡)⟩ using the collapse operator 𝐶𝑛 corresponding
to the measurement

|𝜓(𝑡+ 𝛿𝑡)⟩ = 𝐶𝑛 |𝜓(𝑡)⟩ /
⟨︀
𝜓(𝑡)|𝐶+

𝑛 𝐶𝑛|𝜓(𝑡)
⟩︀1/2

. (3.6)

If more than a single collapse operator is present in Eq. (3.4), the probability of collapse due to the 𝑖th-operator
𝐶𝑖 is given by

𝑃𝑖(𝑡) =
⟨︀
𝜓(𝑡)|𝐶+

𝑖 𝐶𝑖|𝜓(𝑡)
⟩︀
/𝛿𝑝. (3.7)

Evaluating the MC evolution to first-order in time is quite tedious. Instead, QuTiP uses the following algorithm to
simulate a single realization of a quantum system. Starting from a pure state |𝜓(0)⟩:

• I: Choose a random number 𝑟 between zero and one, representing the probability that a quantum jump
occurs.

• II: Integrate the Schrödinger equation, using the effective Hamiltonian (3.4) until a time 𝜏 such that the
norm of the wave function satisfies ⟨𝜓(𝜏) |𝜓(𝜏)⟩ = 𝑟, at which point a jump occurs.

• III: The resultant jump projects the system at time 𝜏 into one of the renormalized states given by Eq. (3.6).
The corresponding collapse operator 𝐶𝑛 is chosen such that 𝑛 is the smallest integer satisfying:

𝑛∑︁
𝑖=1

𝑃𝑛(𝜏) ≥ 𝑟 (3.8)

where the individual 𝑃𝑛 are given by Eq. (3.7). Note that the left hand side of Eq. (3.8) is, by definition,
normalized to unity.

• IV: Using the renormalized state from step III as the new initial condition at time 𝜏 , draw a new random
number, and repeat the above procedure until the final simulation time is reached.

Monte Carlo in QuTiP

In QuTiP, Monte Carlo evolution is implemented with the qutip.mcsolve function. It takes nearly the same
arguments as the qutip.mesolve function for master-equation evolution, except that the initial state must
be a ket vector, as oppose to a density matrix, and there is an optional keyword parameter ntraj that defines
the number of stochastic trajectories to be simulated. By default, ntraj=500 indicating that 500 Monte Carlo
trajectories will be performed.

To illustrate the use of the Monte Carlo evolution of quantum systems in QuTiP, let’s again consider the case
of a two-level atom coupled to a leaky cavity. The only differences to the master-equation treatment is that in this
case we invoke the qutip.mcsolve function instead of qutip.mesolve

In [1]: times = np.linspace(0.0, 10.0, 200)

In [2]: psi0 = tensor(fock(2, 0), fock(10, 5))

In [3]: a = tensor(qeye(2), destroy(10))

In [4]: sm = tensor(destroy(2), qeye(10))

In [5]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + 2 * np.pi * 0.25 * (sm * a.dag() + sm.dag() * a)

44

In [6]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm])
10.0%. Run time: 1.27s. Est. time left: 00:00:00:11
20.0%. Run time: 2.44s. Est. time left: 00:00:00:09
30.0%. Run time: 3.64s. Est. time left: 00:00:00:08
40.0%. Run time: 4.82s. Est. time left: 00:00:00:07
50.0%. Run time: 5.98s. Est. time left: 00:00:00:05
60.0%. Run time: 7.13s. Est. time left: 00:00:00:04
70.0%. Run time: 8.31s. Est. time left: 00:00:00:03
80.0%. Run time: 9.44s. Est. time left: 00:00:00:02
90.0%. Run time: 10.60s. Est. time left: 00:00:00:01
100.0%. Run time: 11.74s. Est. time left: 00:00:00:00
Total run time: 11.76s

In [7]: figure()
Out[7]: <matplotlib.figure.Figure at 0x10b2fa810>

In [8]: plot(times, data.expect[0], times, data.expect[1])
Out[8]:
[<matplotlib.lines.Line2D at 0x107d97a90>,
<matplotlib.lines.Line2D at 0x107b5e9d0>]

In [9]: title('Monte Carlo time evolution')
Out[9]: <matplotlib.text.Text at 0x1079c9cd0>

In [10]: xlabel('Time')
Out[10]: <matplotlib.text.Text at 0x107d51a50>

In [11]: ylabel('Expectation values')
Out[11]: <matplotlib.text.Text at 0x10b5fda90>

In [12]: legend(("cavity photon number", "atom excitation probability"))
Out[12]: <matplotlib.legend.Legend at 0x107cd67d0>

In [13]: show()

The advantage of the Monte Carlo method over the master equation approach is that only the state vector is
required to be kept in the computers memory, as opposed to the entire density matrix. For large quantum system
this becomes a significant advantage, and the Monte Carlo solver is therefore generally recommended for such

45

systems. For example, simulating a Heisenberg spin-chain consisting of 10 spins with random parameters and
initial states takes almost 7 times longer using the master equation rather than Monte Carlo approach with the
default number of trajectories running on a quad-CPU machine. Furthermore, it takes about 7 times the memory
as well. However, for small systems, the added overhead of averaging a large number of stochastic trajectories
to obtain the open system dynamics, as well as starting the multiprocessing functionality, outweighs the benefit
of the minor (in this case) memory saving. Master equation methods are therefore generally more efficient when
Hilbert space sizes are on the order of a couple of hundred states or smaller.

Like the master equation solver qutip.mesolve, the Monte Carlo solver returns a
qutip.solver.Result object consisting of expectation values, if the user has defined expectation
value operators in the 5th argument to mcsolve, or state vectors if no expectation value operators are given.
If state vectors are returned, then the qutip.solver.Result returned by qutip.mcsolve will be an
array of length ntraj, with each element containing an array of ket-type qobjs with the same number of
elements as times. Furthermore, the output qutip.solver.Result object will also contain a list of times
at which collapse occurred, and which collapse operators did the collapse, in the col_times and col_which
properties, respectively.

Changing the Number of Trajectories

As mentioned earlier, by default, the mcsolve function runs 500 trajectories. This value was chosen because
it gives good accuracy, Monte Carlo errors scale as 1/𝑛 where 𝑛 is the number of trajectories, and simultaneously
does not take an excessive amount of time to run. However, like many other options in QuTiP you are free to
change the number of trajectories to fit your needs. If we want to run 1000 trajectories in the above example, we
can simply modify the call to mcsolve like:

In [14]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm], ntraj=1000)
10.0%. Run time: 2.57s. Est. time left: 00:00:00:23
20.0%. Run time: 4.90s. Est. time left: 00:00:00:19
30.0%. Run time: 7.20s. Est. time left: 00:00:00:16
40.0%. Run time: 9.68s. Est. time left: 00:00:00:14
50.0%. Run time: 11.98s. Est. time left: 00:00:00:11
60.0%. Run time: 14.43s. Est. time left: 00:00:00:09
70.0%. Run time: 16.91s. Est. time left: 00:00:00:07
80.0%. Run time: 19.25s. Est. time left: 00:00:00:04
90.0%. Run time: 21.87s. Est. time left: 00:00:00:02
100.0%. Run time: 24.21s. Est. time left: 00:00:00:00
Total run time: 24.27s

where we have added the keyword argument ntraj=1000 at the end of the inputs. Now, the Monte Carlo
solver will calculate expectation values for both operators, a.dag() * a, sm.dag() * sm averaging over
1000 trajectories. Sometimes one is also interested in seeing how the Monte Carlo trajectories converge to the
master equation solution by calculating expectation values over a range of trajectory numbers. If, for example, we
want to average over 1, 10, 100, and 1000 trajectories, then we can input this into the solver using:

In [15]: ntraj = [1, 10, 100, 1000]

Keep in mind that the input list must be in ascending order since the total number of trajectories run by
mcsolve will be calculated using the last element of ntraj. In this case, we need to use an extra index when
getting the expectation values from the qutip.solver.Result object returned by mcsolve. In the above
example using:

In [16]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm], ntraj=[1, 10, 100, 1000])
10.0%. Run time: 2.47s. Est. time left: 00:00:00:22
20.0%. Run time: 4.83s. Est. time left: 00:00:00:19
30.0%. Run time: 7.15s. Est. time left: 00:00:00:16
40.0%. Run time: 9.51s. Est. time left: 00:00:00:14
50.0%. Run time: 11.84s. Est. time left: 00:00:00:11
60.0%. Run time: 14.18s. Est. time left: 00:00:00:09
70.0%. Run time: 16.65s. Est. time left: 00:00:00:07
80.0%. Run time: 18.97s. Est. time left: 00:00:00:04
90.0%. Run time: 21.36s. Est. time left: 00:00:00:02

46

100.0%. Run time: 23.81s. Est. time left: 00:00:00:00
Total run time: 23.88s

we can extract the relevant expectation values using:

In [17]: expt10 = data.expect[1] # <- expectation values avg. over 10 trajectories

In [18]: expt100 = data.expect[2] # <- expectation values avg. over 100 trajectories

In [19]: expt1000 = data.expect[3] # <- expectation values avg. over 1000 trajectories

The Monte Carlo solver also has many available options that can be set using the qutip.solver.Options
class as discussed in Setting Options for the Dynamics Solvers.

Reusing Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In order to solve a given simulation as fast as possible, the solvers in QuTiP take the given input operators and
break them down into simpler components before passing them on to the ODE solvers. Although these operations
are reasonably fast, the time spent organizing data can become appreciable when repeatedly solving a system over,
for example, many different initial conditions. In cases such as this, the Hamiltonian and other operators may be
reused after the initial configuration, thus speeding up calculations. Note that, unless you are planning to reuse the
data many times, this functionality will not be very useful.

To turn on the “reuse” functionality we must set the rhs_reuse=True flag in the
qutip.solver.Options:

In [20]: options = Options(rhs_reuse=True)

A full account of this feature is given in Setting Options for the Dynamics Solvers. Using the previous example,
we will calculate the dynamics for two different initial states, with the Hamiltonian data being reused on the second
call

In [21]: psi0 = tensor(fock(2, 0), fock(10, 5))

In [22]: a = tensor(qeye(2), destroy(10))

In [23]: sm = tensor(destroy(2), qeye(10))

In [24]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + \
....: 2 * np.pi * 0.25 * (sm * a.dag() + sm.dag() * a)
....:

In [25]: data1 = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm])
10.0%. Run time: 1.20s. Est. time left: 00:00:00:10
20.0%. Run time: 2.49s. Est. time left: 00:00:00:09
30.0%. Run time: 3.78s. Est. time left: 00:00:00:08
40.0%. Run time: 4.97s. Est. time left: 00:00:00:07
50.0%. Run time: 6.06s. Est. time left: 00:00:00:06
60.0%. Run time: 7.25s. Est. time left: 00:00:00:04
70.0%. Run time: 8.36s. Est. time left: 00:00:00:03
80.0%. Run time: 9.55s. Est. time left: 00:00:00:02
90.0%. Run time: 10.73s. Est. time left: 00:00:00:01
100.0%. Run time: 11.89s. Est. time left: 00:00:00:00
Total run time: 11.95s

In [26]: psi1 = tensor(fock(2, 0), coherent(10, 2 - 1j))

In [27]: opts = Options(rhs_reuse=True) # Run a second time, reusing RHS

In [28]: data2 = mcsolve(H, psi1, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm], options=opts)

47

10.0%. Run time: 2.30s. Est. time left: 00:00:00:20
20.0%. Run time: 4.70s. Est. time left: 00:00:00:18
30.0%. Run time: 7.00s. Est. time left: 00:00:00:16
40.0%. Run time: 9.57s. Est. time left: 00:00:00:14
50.0%. Run time: 12.10s. Est. time left: 00:00:00:12
60.0%. Run time: 14.45s. Est. time left: 00:00:00:09
70.0%. Run time: 16.79s. Est. time left: 00:00:00:07
80.0%. Run time: 18.99s. Est. time left: 00:00:00:04
90.0%. Run time: 21.26s. Est. time left: 00:00:00:02
100.0%. Run time: 23.43s. Est. time left: 00:00:00:00
Total run time: 23.47s

In [29]: figure()
Out[29]: <matplotlib.figure.Figure at 0x107d48210>

In [30]: plot(times, data1.expect[0], times, data1.expect[1], lw=2)
Out[30]:
[<matplotlib.lines.Line2D at 0x10ab737d0>,
<matplotlib.lines.Line2D at 0x10ab73a50>]

In [31]: plot(times, data2.expect[0], '--', times, data2.expect[1], '--', lw=2)
Out[31]:
[<matplotlib.lines.Line2D at 0x1096d45d0>,
<matplotlib.lines.Line2D at 0x1096d47d0>]

In [32]: title('Monte Carlo time evolution')
Out[32]: <matplotlib.text.Text at 0x107db4790>

In [33]: xlabel('Time', fontsize=14)
Out[33]: <matplotlib.text.Text at 0x1078fcd10>

In [34]: ylabel('Expectation values', fontsize=14)
Out[34]: <matplotlib.text.Text at 0x107df7150>

In [35]: legend(("cavity photon number", "atom excitation probability"))
Out[35]: <matplotlib.legend.Legend at 0x107a31b90>

In [36]: show()

48

In addition to the initial state, one may reuse the Hamiltonian data when changing the number of trajecto-
ries ntraj or simulation times times. The reusing of Hamiltonian data is also supported for time-dependent
Hamiltonians. See Solving Problems with Time-dependent Hamiltonians for further details.

Fortran Based Monte Carlo Solver

Note: In order to use the Fortran Monte Carlo solver, you must have the blas development libraries, and installed
QuTiP using the flag: --with-f90mc.

In performing time-independent Monte Carlo simulations with QuTiP, systems with small Hilbert spaces suffer
from poor performance as the ODE solver must exit the ODE solver at each time step and check for the state
vector norm. To correct this, QuTiP now includes an optional Fortran based Monte Carlo solver that has enhanced
performance for systems with small Hilbert space dimensionality. Using the Fortran based solver is extremely
simple; one just needs to replace mcsolve with mcsolve_f90. For example, from our previous demonstration

In [37]: data1 = mcsolve_f90(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm])

In using the Fortran solver, there are a few limitations that must be kept in mind. First, this solver only works
for time-independent systems. Second, you can not pass a list of trajectories to ntraj.

Bloch-Redfield master equation

Introduction

The Lindblad master equation introduced earlier is constructed so that it describes a physical evolution of the
density matrix (i.e., trace and positivity preserving), but it does not provide a connection to any underlaying
microscopic physical model. The Lindblad operators (collapse operators) describe phenomenological processes,
such as for example dephasing and spin flips, and the rates of these processes are arbitrary parameters in the model.
In many situations the collapse operators and their corresponding rates have clear physical interpretation, such as
dephasing and relaxation rates, and in those cases the Lindblad master equation is usually the method of choice.

However, in some cases, for example systems with varying energy biases and eigenstates and that couple
to an environment in some well-defined manner (through a physically motivated system-environment interaction
operator), it is often desirable to derive the master equation from more fundamental physical principles, and relate
it to for example the noise-power spectrum of the environment.

The Bloch-Redfield formalism is one such approach to derive a master equation from a microscopic system. It
starts from a combined system-environment perspective, and derives a perturbative master equation for the system

49

alone, under the assumption of weak system-environment coupling. One advantage of this approach is that the
dissipation processes and rates are obtained directly from the properties of the environment. On the downside, it
does not intrinsically guarantee that the resulting master equation unconditionally preserves the physical properties
of the density matrix (because it is a perturbative method). The Bloch-Redfield master equation must therefore be
used with care, and the assumptions made in the derivation must be honored. (The Lindblad master equation is in
a sense more robust – it always results in a physical density matrix – although some collapse operators might not
be physically justified). For a full derivation of the Bloch Redfield master equation, see e.g. [Coh92] or [Bre02].
Here we present only a brief version of the derivation, with the intention of introducing the notation and how it
relates to the implementation in QuTiP.

Brief Derivation and Definitions

The starting point of the Bloch-Redfield formalism is the total Hamiltonian for the system and the environment
(bath): 𝐻 = 𝐻S +𝐻B +𝐻I, where 𝐻 is the total system+bath Hamiltonian, 𝐻S and 𝐻B are the system and bath
Hamiltonians, respectively, and 𝐻I is the interaction Hamiltonian.

The most general form of a master equation for the system dynamics is obtained by tracing out the bath from
the von-Neumann equation of motion for the combined system (�̇� = −𝑖ℎ̄−1[𝐻, 𝜌]). In the interaction picture the
result is

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = −ℎ̄−2

∫︁ 𝑡

0

𝑑𝜏 Tr𝐵 [𝐻𝐼(𝑡), [𝐻𝐼(𝜏), 𝜌𝑆(𝜏) ⊗ 𝜌𝐵]], (3.9)

where the additional assumption that the total system-bath density matrix can be factorized as 𝜌(𝑡) ≈ 𝜌𝑆(𝑡)⊗ 𝜌𝐵 .
This assumption is known as the Born approximation, and it implies that there never is any entanglement between
the system and the bath, neither in the initial state nor at any time during the evolution. It is justified for weak
system-bath interaction.

The master equation (3.9) is non-Markovian, i.e., the change in the density matrix at a time 𝑡 depends on states
at all times 𝜏 < 𝑡, making it intractable to solve both theoretically and numerically. To make progress towards a
manageable master equation, we now introduce the Markovian approximation, in which 𝜌(𝑠) is replaced by 𝜌(𝑡)
in Eq. (3.9). The result is the Redfield equation

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = −ℎ̄−2

∫︁ 𝑡

0

𝑑𝜏 Tr𝐵 [𝐻𝐼(𝑡), [𝐻𝐼(𝜏), 𝜌𝑆(𝑡) ⊗ 𝜌𝐵]], (3.10)

which is local in time with respect the density matrix, but still not Markovian since it contains an implicit depen-
dence on the initial state. By extending the integration to infinity and substituting 𝜏 → 𝑡 − 𝜏 , a fully Markovian
master equation is obtained:

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = −ℎ̄−2

∫︁ ∞

0

𝑑𝜏 Tr𝐵 [𝐻𝐼(𝑡), [𝐻𝐼(𝑡− 𝜏), 𝜌𝑆(𝑡) ⊗ 𝜌𝐵]]. (3.11)

The two Markovian approximations introduced above are valid if the time-scale with which the system dynamics
changes is large compared to the time-scale with which correlations in the bath decays (corresponding to a “short-
memory” bath, which results in Markovian system dynamics).

The master equation (3.11) is still on a too general form to be suitable for numerical implementation. We
therefore assume that the system-bath interaction takes the form 𝐻𝐼 =

∑︀
𝛼𝐴𝛼 ⊗ 𝐵𝛼 and where 𝐴𝛼 are system

operators and 𝐵𝛼 are bath operators. This allows us to write master equation in terms of system operators and
bath correlation functions:

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = −ℎ̄−2

∑︁
𝛼𝛽

∫︁ ∞

0

𝑑𝜏 {𝑔𝛼𝛽(𝜏) [𝐴𝛼(𝑡)𝐴𝛽(𝑡− 𝜏)𝜌𝑆(𝑡) −𝐴𝛼(𝑡− 𝜏)𝜌𝑆(𝑡)𝐴𝛽(𝑡)]

𝑔𝛼𝛽(−𝜏) [𝜌𝑆(𝑡)𝐴𝛼(𝑡− 𝜏)𝐴𝛽(𝑡) −𝐴𝛼(𝑡)𝜌𝑆(𝑡)𝐴𝛽(𝑡− 𝜏)]} ,

where 𝑔𝛼𝛽(𝜏) = Tr𝐵 [𝐵𝛼(𝑡)𝐵𝛽(𝑡− 𝜏)𝜌𝐵] = ⟨𝐵𝛼(𝜏)𝐵𝛽(0)⟩, since the bath state 𝜌𝐵 is a steady state.
In the eigenbasis of the system Hamiltonian, where 𝐴𝑚𝑛(𝑡) = 𝐴𝑚𝑛𝑒

𝑖𝜔𝑚𝑛𝑡, 𝜔𝑚𝑛 = 𝜔𝑚 − 𝜔𝑛 and 𝜔𝑚 are the
eigenfrequencies corresponding the eigenstate |𝑚⟩, we obtain in matrix form in the Schrödinger picture

𝑑

𝑑𝑡
𝜌𝑎𝑏(𝑡) = −𝑖𝜔𝑎𝑏𝜌𝑎𝑏(𝑡) − ℎ̄−2

∑︁
𝛼,𝛽

sec∑︁
𝑐,𝑑

∫︁ ∞

0

𝑑𝜏

{︃
𝑔𝛼𝛽(𝜏)

[︃
𝛿𝑏𝑑

∑︁
𝑛

𝐴𝛼
𝑎𝑛𝐴

𝛽
𝑛𝑐𝑒

𝑖𝜔𝑐𝑛𝜏 −𝐴𝛼
𝑎𝑐𝐴

𝛽
𝑑𝑏𝑒

𝑖𝜔𝑐𝑎𝜏

]︃

+ 𝑔𝛼𝛽(−𝜏)

[︃
𝛿𝑎𝑐

∑︁
𝑛

𝐴𝛼
𝑑𝑛𝐴

𝛽
𝑛𝑏𝑒

𝑖𝜔𝑛𝑑𝜏 −𝐴𝛼
𝑎𝑐𝐴

𝛽
𝑑𝑏𝑒

𝑖𝜔𝑏𝑑𝜏

]︃}︃
𝜌𝑐𝑑(𝑡),

50

where the “sec” above the summation symbol indicate summation of the secular terms which satisfy |𝜔𝑎𝑏−𝜔𝑐𝑑| ≪
𝜏decay. This is an almost-useful form of the master equation. The final step before arriving at the form of the Bloch-
Redfield master equation that is implemented in QuTiP, involves rewriting the bath correlation function 𝑔(𝜏) in
terms of the noise-power spectrum of the environment 𝑆(𝜔) =

∫︀∞
−∞ 𝑑𝜏𝑒𝑖𝜔𝜏𝑔(𝜏):∫︁ ∞

0

𝑑𝜏 𝑔𝛼𝛽(𝜏)𝑒𝑖𝜔𝜏 =
1

2
𝑆𝛼𝛽(𝜔) + 𝑖𝜆𝛼𝛽(𝜔), (3.12)

where 𝜆𝑎𝑏(𝜔) is an energy shift that is neglected here. The final form of the Bloch-Redfield master equation is

𝑑

𝑑𝑡
𝜌𝑎𝑏(𝑡) = −𝑖𝜔𝑎𝑏𝜌𝑎𝑏(𝑡) +

sec∑︁
𝑐,𝑑

𝑅𝑎𝑏𝑐𝑑𝜌𝑐𝑑(𝑡), (3.13)

where

𝑅𝑎𝑏𝑐𝑑 = − ℎ̄
−2

2

∑︁
𝛼,𝛽

{︃
𝛿𝑏𝑑

∑︁
𝑛

𝐴𝛼
𝑎𝑛𝐴

𝛽
𝑛𝑐𝑆𝛼𝛽(𝜔𝑐𝑛) −𝐴𝛼

𝑎𝑐𝐴
𝛽
𝑑𝑏𝑆𝛼𝛽(𝜔𝑐𝑎)

+ 𝛿𝑎𝑐
∑︁
𝑛

𝐴𝛼
𝑑𝑛𝐴

𝛽
𝑛𝑏𝑆𝛼𝛽(𝜔𝑑𝑛) −𝐴𝛼

𝑎𝑐𝐴
𝛽
𝑑𝑏𝑆𝛼𝛽(𝜔𝑑𝑏)

}︃
,

is the Bloch-Redfield tensor.
The Bloch-Redfield master equation in the form Eq. (3.13) is suitable for numerical implementation. The

input parameters are the system Hamiltonian 𝐻 , the system operators through which the environment couples to
the system 𝐴𝛼, and the noise-power spectrum 𝑆𝛼𝛽(𝜔) associated with each system-environment interaction term.

To simplify the numerical implementation we assume that 𝐴𝛼 are Hermitian and that cross-correlations be-
tween different environment operators vanish, so that the final expression for the Bloch-Redfield tensor that is
implemented in QuTiP is

𝑅𝑎𝑏𝑐𝑑 = − ℎ̄
−2

2

∑︁
𝛼

{︃
𝛿𝑏𝑑

∑︁
𝑛

𝐴𝛼
𝑎𝑛𝐴

𝛼
𝑛𝑐𝑆𝛼(𝜔𝑐𝑛) −𝐴𝛼

𝑎𝑐𝐴
𝛼
𝑑𝑏𝑆𝛼(𝜔𝑐𝑎)

+ 𝛿𝑎𝑐
∑︁
𝑛

𝐴𝛼
𝑑𝑛𝐴

𝛼
𝑛𝑏𝑆𝛼(𝜔𝑑𝑛) −𝐴𝛼

𝑎𝑐𝐴
𝛼
𝑑𝑏𝑆𝛼(𝜔𝑑𝑏)

}︃
.

Bloch-Redfield master equation in QuTiP

In QuTiP, the Bloch-Redfield tensor Eq. (3.5) can be calculated using the function
qutip.bloch_redfield.bloch_redfield_tensor. It takes three mandatory arguments: The
system Hamiltonian 𝐻 , a list of operators through which to the bath 𝐴𝛼, and a list of corresponding spectral
density functions 𝑆𝛼(𝜔). The spectral density functions are callback functions that takes the (angular) frequency
as a single argument.

To illustrate how to calculate the Bloch-Redfield tensor, let’s consider a two-level atom

𝐻 = −1

2
∆𝜎𝑥 − 1

2
𝜖0𝜎𝑧 (3.14)

that couples to an Ohmic bath through the 𝜎𝑥 operator. The corresponding Bloch-Redfield tensor can be calculated
in QuTiP using the following code

In [1]: delta = 0.2 * 2*np.pi; eps0 = 1.0 * 2*np.pi; gamma1 = 0.5

In [2]: H = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()

In [3]: def ohmic_spectrum(w):
...: if w == 0.0: # dephasing inducing noise
...: return gamma1
...: else: # relaxation inducing noise
...: return gamma1 / 2 * (w / (2 * np.pi)) * (w > 0.0)
...:

51

In [4]: R, ekets = bloch_redfield_tensor(H, [sigmax()], [ohmic_spectrum])

In [5]: np.real(R.full())
Out[5]:
array([[0. , 0. , 0. , 0.24514517],

[0. , -0.16103412, 0. , 0.],
[0. , 0. , -0.16103412, 0.],
[0. , 0. , 0. , -0.24514517]])

For convenience, the function qutip.bloch_redfield.bloch_redfield_tensor also returns a
list of eigenkets ekets, since they are calculated in the process of calculating the Bloch-Redfield tensor R, and
the ekets are usually needed again later when transforming operators between the computational basis and the
eigenbasis.

The evolution of a wavefunction or density matrix, according to the Bloch-Redfield master equation (3.13),
can be calculated using the QuTiP function qutip.bloch_redfield.bloch_redfield_solve. It takes
five mandatory arguments: the Bloch-Redfield tensor R, the list of eigenkets ekets, the initial state psi0 (as a
ket or density matrix), a list of times tlist for which to evaluate the expectation values, and a list of operators
e_ops for which to evaluate the expectation values at each time step defined by tlist. For example, to evaluate
the expectation values of the 𝜎𝑥, 𝜎𝑦 , and 𝜎𝑧 operators for the example above, we can use the following code:

In [6]: import matplotlib.pyplot as plt

In [7]: tlist = np.linspace(0, 15.0, 1000)

In [8]: psi0 = rand_ket(2)

In [9]: e_ops = [sigmax(), sigmay(), sigmaz()]

In [10]: expt_list = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops)

In [11]: sphere = Bloch()

In [12]: sphere.add_points([expt_list[0], expt_list[1], expt_list[2]])

In [13]: sphere.vector_color = ['r']

In [14]: sphere.add_vectors(np.array([delta, 0, eps0]) / np.sqrt(delta ** 2 + eps0 ** 2))

In [15]: sphere.make_sphere()

In [16]: plt.show()

52

The two steps of calculating the Bloch-Redfield tensor and evolve the corresponding master equation can be
combined into one by using the function qutip.bloch_redfield.brmesolve, which takes same argu-
ments as qutip.mesolve and qutip.mcsolve, expect for the additional list of spectral callback functions.

In [17]: output = brmesolve(H, psi0, tlist, [sigmax()], e_ops, [ohmic_spectrum])

where the resulting output is an instance of the class qutip.solver.Result.

Solving Problems with Time-dependent Hamiltonians

Methods for Writing Time-Dependent Operators

In the previous examples of quantum evolution, we assumed that the systems under consideration were described
by time-independent Hamiltonians. However, many systems have explicit time dependence in either the Hamil-
tonian, or the collapse operators describing coupling to the environment, and sometimes both components might
depend on time. The two main evolution solvers in QuTiP, qutip.mesolve and qutip.mcsolve, discussed
in Lindblad Master Equation Solver and Monte Carlo Solver respectively, are capable of handling time-dependent
Hamiltonians and collapse terms. There are, in general, three different ways to implement time-dependent prob-
lems in QuTiP:

1. Function based: Hamiltonian / collapse operators expressed using [qobj, func] pairs, where the time-
dependent coefficients of the Hamiltonian (or collapse operators) are expressed in the Python functions.

2. String (Cython) based: The Hamiltonian and/or collapse operators are expressed as a list of [qobj, string]
pairs, where the time-dependent coefficients are represented as strings. The resulting Hamiltonian is then
compiled into C code using Cython and executed.

3. Hamiltonian function (outdated): The Hamiltonian is itself a Python function with time-dependence.
Collapse operators must be time independent using this input format.

Give the multiple choices of input style, the first question that arrises is which option to choose? In short, the
function based method (option #1) is the most general, allowing for essentially arbitrary coefficients expressed
via user defined functions. However, by automatically compiling your system into C code, the second option
(string based) tends to be more efficient and will run faster. Of course, for small system sizes and evolution times,
the difference will be minor. Although this method does not support all time-dependent coefficients that one can
think of, it does support essentially all problems that one would typically encounter. Time-dependent coefficients

53

using any of the following functions, or combinations thereof (including constants) can be compiled directly into
C-code:

'abs', 'acos', 'acosh', 'arg', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'conj',
'cos', 'cosh','exp', 'imag', 'log', 'pow', 'proj, 'real', 'sin', 'sinh', 'sqrt',
'tan', 'tanh'

If you require mathematical functions other than those listed above, than it is possible to call any of the func-
tions in the numpy math library using the prefix np. before the function name in the string, i.e ’np.sin(t)’.
The available functions can be found using

In [1]: import numpy as np

In [2]: np.array(dir(np.math)[6:])
Out[2]:
array(['asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',

'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1',
'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',
'hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10',
'log1p', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt',
'tan', 'tanh', 'trunc'],

dtype='|S9')

Finally option #3, expressing the Hamiltonian as a Python function, is the original method for time dependence
in QuTiP 1.x. However, this method is somewhat less efficient then the previously mentioned methods, and does
not allow for time-dependent collapse operators. However, in contrast to options #1 and #2, this method can be
used in implementing time-dependent Hamiltonians that cannot be expressed as a function of constant operators
with time-dependent coefficients.

A collection of examples demonstrating the simulation of time-dependent problems can be found on the tuto-
rials web page.

Function Based Time Dependence

A very general way to write a time-dependent Hamiltonian or collapse operator is by using Python functions as
the time-dependent coefficients. To accomplish this, we need to write a Python function that returns the time-
dependent coefficient. Additionally, we need to tell QuTiP that a given Hamiltonian or collapse operator should
be associated with a given Python function. To do this, one needs to specify operator-function pairs in list format:
[Op, py_coeff], where Op is a given Hamiltonian or collapse operator and py_coeff is the name of the
Python function representing the coefficient. With this format, the form of the Hamiltonian for both mesolve
and mcsolve is:

>>> H = [H0, [H1, py_coeff1], [H2, py_coeff2], ...]

where H0 is a time-independent Hamiltonian, while H1,‘‘H2‘‘, are time dependent. The same format can be
used for collapse operators:

>>> c_ops = [[C0, py_coeff0], C1, [C2, py_coeff2], ...]

Here we have demonstrated that the ordering of time-dependent and time-independent terms does not matter.
In addition, any or all of the collapse operators may be time dependent.

Note: While, in general, you can arrange time-dependent and time-independent terms in any order you like, it is
best to place all time-independent terms first.

As an example, we will look at an example that has a time-dependent Hamiltonian of the form 𝐻 = 𝐻0 −
𝑓(𝑡)𝐻1 where 𝑓(𝑡) is the time-dependent driving strength given as 𝑓(𝑡) = 𝐴 exp

[︁
− (𝑡/𝜎)

2
]︁
. The follow code

sets up the problem

In [3]: ustate = basis(3, 0)

In [4]: excited = basis(3, 1)

54

http://qutip.org/tutorials.html
http://qutip.org/tutorials.html

In [5]: ground = basis(3, 2)

In [6]: N = 2 # Set where to truncate Fock state for cavity

In [7]: sigma_ge = tensor(qeye(N), ground * excited.dag()) # |g><e|

In [8]: sigma_ue = tensor(qeye(N), ustate * excited.dag()) # |u><e|

In [9]: a = tensor(destroy(N), qeye(3))

In [10]: ada = tensor(num(N), qeye(3))

In [11]: c_ops = [] # Build collapse operators

In [12]: kappa = 1.5 # Cavity decay rate

In [13]: c_ops.append(np.sqrt(kappa) * a)

In [14]: gamma = 6 # Atomic decay rate

In [15]: c_ops.append(np.sqrt(5*gamma/9) * sigma_ue) # Use Rb branching ratio of 5/9 e->u

In [16]: c_ops.append(np.sqrt(4*gamma/9) * sigma_ge) # 4/9 e->g

In [17]: t = np.linspace(-15, 15, 100) # Define time vector

In [18]: psi0 = tensor(basis(N, 0), ustate) # Define initial state

In [19]: state_GG = tensor(basis(N, 1), ground) # Define states onto which to project

In [20]: sigma_GG = state_GG * state_GG.dag()

In [21]: state_UU = tensor(basis(N, 0), ustate)

In [22]: sigma_UU = state_UU * state_UU.dag()

In [23]: g = 5 # coupling strength

In [24]: H0 = -g * (sigma_ge.dag() * a + a.dag() * sigma_ge) # time-independent term

In [25]: H1 = (sigma_ue.dag() + sigma_ue) # time-dependent term

Given that we have a single time-dependent Hamiltonian term, and constant collapse terms, we need to specify
a single Python function for the coefficient 𝑓(𝑡). In this case, one can simply do

In [26]: def H1_coeff(t, args):
....: return 9 * np.exp(-(t / 5.) ** 2)
....:

In this case, the return value dependents only on time. However, when specifying Python functions for coef-
ficients, the function must have (t,args) as the input variables, in that order. Having specified our coefficient
function, we can now specify the Hamiltonian in list format and call the solver (in this case qutip.mesolve)

In [27]: H = [H0,[H1,H1_coeff]]

In [28]: output = mesolve(H, psi0, t, c_ops, [ada, sigma_UU, sigma_GG])

We can call the Monte Carlo solver in the exact same way (if using the default ntraj=500):

In [29]: output = mcsolve(H, psi0, t, c_ops, [ada, sigma_UU, sigma_GG])
10.0%. Run time: 0.56s. Est. time left: 00:00:00:05
20.0%. Run time: 1.08s. Est. time left: 00:00:00:04

55

30.0%. Run time: 1.64s. Est. time left: 00:00:00:03
40.0%. Run time: 2.31s. Est. time left: 00:00:00:03
50.0%. Run time: 2.90s. Est. time left: 00:00:00:02
60.0%. Run time: 3.49s. Est. time left: 00:00:00:02
70.0%. Run time: 4.10s. Est. time left: 00:00:00:01
80.0%. Run time: 4.65s. Est. time left: 00:00:00:01
90.0%. Run time: 5.22s. Est. time left: 00:00:00:00
100.0%. Run time: 5.80s. Est. time left: 00:00:00:00
Total run time: 5.92s

The output from the master equation solver is identical to that shown in the examples, the Monte Carlo however
will be noticeably off, suggesting we should increase the number of trajectories for this example. In addition, we
can also consider the decay of a simple Harmonic oscillator with time-varying decay rate

In [30]: kappa = 0.5

In [31]: def col_coeff(t, args): # coefficient function
....: return np.sqrt(kappa * np.exp(-t))
....:

In [32]: N = 10 # number of basis states

In [33]: a = destroy(N)

In [34]: H = a.dag() * a # simple HO

In [35]: psi0 = basis(N, 9) # initial state

In [36]: c_ops = [[a, col_coeff]] # time-dependent collapse term

In [37]: times = np.linspace(0, 10, 100)

In [38]: output = mesolve(H, psi0, times, c_ops, [a.dag() * a])

Using the args variable

In the previous example we hardcoded all of the variables, driving amplitude 𝐴 and width 𝜎, with their nu-
merical values. This is fine for problems that are specialized, or that we only want to run once. However, in many
cases, we would like to change the parameters of the problem in only one location (usually at the top of the script),
and not have to worry about manually changing the values on each run. QuTiP allows you to accomplish this
using the keyword args as an input to the solvers. For instance, instead of explicitly writing 9 for the amplitude
and 5 for the width of the gaussian driving term, we can make us of the args variable

In [39]: def H1_coeff(t, args):
....: return args['A'] * np.exp(-(t/args['sigma'])**2)
....:

or equivalently,

In [40]: def H1_coeff(t, args):
....: A = args['A']
....: sig = args['sigma']
....: return A * np.exp(-(t / sig) ** 2)
....:

where args is a Python dictionary of key: value pairs args = {’A’: a, ’sigma’: b} where
a and b are the two parameters for the amplitude and width, respectively. Of course, we can always hardcode the
values in the dictionary as well args = {’A’: 9, ’sigma’: 5}, but there is much more flexibility by
using variables in args. To let the solvers know that we have a set of args to pass we append the args to the end
of the solver input:

56

In [41]: output = mesolve(H, psi0, times, c_ops, [a.dag() * a], args={'A': 9, 'sigma': 5})

or to keep things looking pretty

In [42]: args = {'A': 9, 'sigma': 5}

In [43]: output = mesolve(H, psi0, times, c_ops, [a.dag() * a], args=args)

Once again, the Monte Carlo solver qutip.mcsolve works in an identical manner.

String Format Method

Note: You must have Cython installed on your computer to use this format. See Installation for instructions on
installing Cython.

The string-based time-dependent format works in a similar manner as the previously discussed Python function
method. That being said, the underlying code does something completely different. When using this format,
the strings used to represent the time-dependent coefficients, as well as Hamiltonian and collapse operators, are
rewritten as Cython code using a code generator class and then compiled into C code. The details of this meta-
programming will be published in due course. however, in short, this can lead to a substantial reduction in time
for complex time-dependent problems, or when simulating over long intervals.

Like the previous method, the string-based format uses a list pair format [Op, str] where str is now a
string representing the time-dependent coefficient. For our first example, this string would be ’9 * exp(-(t
/ 5.) ** 2)’. The Hamiltonian in this format would take the form:

In [44]: H = [H0, [H1, '9 * exp(-(t / 5) ** 2)']]

Notice that this is a valid Hamiltonian for the string-based format as exp is included in the above list of
suitable functions. Calling the solvers is the same as before:

In [45]: output = mesolve(H, psi0, t, c_ops, [a.dag() * a])

We can also use the args variable in the same manner as before, however we must rewrite our string term to
read: ’A * exp(-(t / sig) ** 2)’

In [46]: H = [H0, [H1, 'A * exp(-(t / sig) ** 2)']]

In [47]: args = {'A': 9, 'sig': 5}

In [48]: output = mesolve(H, psi0, times, c_ops, [a.dag()*a], args=args)

Important: Naming your args variables e, j or pi will cause errors when using the string-based format.

Collapse operators are handled in the exact same way.

Reusing Time-Dependent Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

When repeatedly simulating a system where only the time-dependent variables, or initial state change, it is
possible to reuse the Hamiltonian data stored in QuTiP and there by avoid spending time needlessly prepar-
ing the Hamiltonian and collapse terms for simulation. To turn on the the reuse features, we must pass a
qutip.Options object with the rhs_reuse flag turned on. Instructions on setting flags are found in Set-
ting Options for the Dynamics Solvers. For example, we can do

In [49]: H = [H0, [H1, 'A * exp(-(t / sig) ** 2)']]

In [50]: args = {'A': 9, 'sig': 5}

57

In [51]: output = mcsolve(H, psi0, times, c_ops, [a.dag()*a], args=args)
10.0%. Run time: 0.36s. Est. time left: 00:00:00:03
20.0%. Run time: 0.64s. Est. time left: 00:00:00:02
30.0%. Run time: 0.93s. Est. time left: 00:00:00:02
40.0%. Run time: 1.21s. Est. time left: 00:00:00:01
50.0%. Run time: 1.48s. Est. time left: 00:00:00:01
60.0%. Run time: 1.76s. Est. time left: 00:00:00:01
70.0%. Run time: 2.00s. Est. time left: 00:00:00:00
80.0%. Run time: 2.23s. Est. time left: 00:00:00:00
90.0%. Run time: 2.46s. Est. time left: 00:00:00:00
100.0%. Run time: 2.71s. Est. time left: 00:00:00:00
Total run time: 2.81s

In [52]: opts = Options(rhs_reuse=True)

In [53]: args = {'A': 10, 'sig': 3}

In [54]: output = mcsolve(H, psi0, times, c_ops, [a.dag()*a], args=args, options=opts)
10.0%. Run time: 0.28s. Est. time left: 00:00:00:02
20.0%. Run time: 0.53s. Est. time left: 00:00:00:02
30.0%. Run time: 0.78s. Est. time left: 00:00:00:01
40.0%. Run time: 1.09s. Est. time left: 00:00:00:01
50.0%. Run time: 1.37s. Est. time left: 00:00:00:01
60.0%. Run time: 1.67s. Est. time left: 00:00:00:01
70.0%. Run time: 1.96s. Est. time left: 00:00:00:00
80.0%. Run time: 2.35s. Est. time left: 00:00:00:00
90.0%. Run time: 2.72s. Est. time left: 00:00:00:00
100.0%. Run time: 2.99s. Est. time left: 00:00:00:00
Total run time: 3.03s

The second call to qutip.mcsolve does not reorganize the data, and in the case of the string format, does
not recompile the Cython code. For the small system here, the savings in computation time is quite small, however,
if you need to call the solvers many times for different parameters, this savings will obviously start to add up.

Running String-Based Time-Dependent Problems using Parfor

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In this section we discuss running string-based time-dependent problems using the qutip.parfor func-
tion. As the qutip.mcsolve function is already parallelized, running string-based time dependent problems
inside of parfor loops should be restricted to the qutip.mesolve function only. When using the string-based
format, the system Hamiltonian and collapse operators are converted into C code with a specific file name that
is automatically genrated, or supplied by the user via the rhs_filename property of the qutip.Options
class. Because the qutip.parfor function uses the built-in Python multiprocessing functionality, in calling the
solver inside a parfor loop, each thread will try to generate compiled code with the same file name, leading to a
crash. To get around this problem you can call the qutip.rhs_generate function to compile simulation into
C code before calling parfor. You must then set the qutip.Odedata object rhs_reuse=True for all solver
calls inside the parfor loop that indicates that a valid C code file already exists and a new one should not be gener-
ated. As an example, we will look at the Landau-Zener-Stuckelberg interferometry example that can be found in
the notebook “Time-dependent master equation: Landau-Zener-Stuckelberg inteferometry” in the tutorials section
of the QuTiP web site.

To set up the problem, we run the following code:

In [55]: delta = 0.1 * 2 * np.pi # qubit sigma_x coefficient

In [56]: w = 2.0 * 2 * np.pi # driving frequency

In [57]: T = 2 * np.pi / w # driving period

In [58]: gamma1 = 0.00001 # relaxation rate

58

In [59]: gamma2 = 0.005 # dephasing rate

In [60]: eps_list = np.linspace(-10.0, 10.0, 51) * 2 * np.pi # epsilon

In [61]: A_list = np.linspace(0.0, 20.0, 51) * 2 * np.pi # Amplitude

In [62]: sx = sigmax(); sz = sigmaz(); sm = destroy(2); sn = num(2)

In [63]: c_ops = [np.sqrt(gamma1) * sm, np.sqrt(gamma2) * sz] # relaxation and dephasing

In [64]: H0 = -delta / 2.0 * sx

In [65]: H1 = [sz, '-eps / 2.0 + A / 2.0 * sin(w * t)']

In [66]: H_td = [H0, H1]

In [67]: Hargs = {'w': w, 'eps': eps_list[0], 'A': A_list[0]}

where the last code block sets up the problem using a string-based Hamiltonian, and Hargs is a dictionary
of arguments to be passed into the Hamiltonian. In this example, we are going to use the qutip.propagator
and qutip.propagator.propagator_steadystate to find expectation values for different values of 𝜖
and 𝐴 in the Hamiltonian 𝐻 = − 1

2∆𝜎𝑥 − 1
2𝜖𝜎𝑧 −

1
2𝐴 sin(𝜔𝑡).

We must now tell the qutip.mesolve function, that is called by qutip.propagator to reuse a pre-
generated Hamiltonian constructed using the qutip.rhs_generate command:

In [68]: opts = Options(rhs_reuse=True)

In [69]: rhs_generate(H_td, c_ops, Hargs, name='lz_func')

Here, we have given the generated file a custom name lz_func, however this is not necessary
as a generic name will automatically be given. Now we define the function task that is called by
qutip.parallel.parfor with the m-index parallelized in loop over the elements of p_mat[m,n]:

In [70]: def task(args):
....: m, eps = args
....: p_mat_m = np.zeros(len(A_list))
....: for n, A in enumerate(A_list):
....: # change args sent to solver, w is really a constant though.
....: Hargs = {'w': w, 'eps': eps,'A': A}
....: U = propagator(H_td, T, c_ops, Hargs, opts) #<- IMPORTANT LINE
....: rho_ss = propagator_steadystate(U)
....: p_mat_m[n] = expect(sn, rho_ss)
....: return [m, p_mat_m]
....:

Notice the Options opts in the call to the qutip.propagator function. This is tells the
qutip.mesolve function used in the propagator to call the pre-generated file lz_func. If this were miss-
ing then the routine would fail.

Floquet Formalism

Introduction

Many time-dependent problems of interest are periodic. The dynamics of such systems can be solved for directly
by numerical integration of the Schrödinger or Master equation, using the time-dependent Hamiltonian. But they
can also be transformed into time-independent problems using the Floquet formalism. Time-independent problems
can be solve much more efficiently, so such a transformation is often very desirable.

In the standard derivations of the Lindblad and Bloch-Redfield master equations the Hamiltonian describing
the system under consideration is assumed to be time independent. Thus, strictly speaking, the standard forms
of these master equation formalisms should not blindly be applied to system with time-dependent Hamiltonians.
However, in many relevant cases, in particular for weak driving, the standard master equations still turns out to be
useful for many time-dependent problems. But a more rigorous approach would be to rederive the master equation

59

taking the time-dependent nature of the Hamiltonian into account from the start. The Floquet-Markov Master
equation is one such a formalism, with important applications for strongly driven systems (see e.g., [Gri98]).

Here we give an overview of how the Floquet and Floquet-Markov formalisms can be used for solving time-
dependent problems in QuTiP. To introduce the terminology and naming conventions used in QuTiP we first give
a brief summary of quantum Floquet theory.

Floquet theory for unitary evolution

The Schrödinger equation with a time-dependent Hamiltonian 𝐻(𝑡) is

𝐻(𝑡)Ψ(𝑡) = 𝑖ℎ̄
𝜕

𝜕𝑡
Ψ(𝑡), (3.15)

where Ψ(𝑡) is the wave function solution. Here we are interested in problems with periodic time-dependence, i.e.,
the Hamiltonian satisfies 𝐻(𝑡) = 𝐻(𝑡+ 𝑇) where 𝑇 is the period. According to the Floquet theorem, there exist
solutions to (3.15) on the form

Ψ𝛼(𝑡) = exp(−𝑖𝜖𝛼𝑡/ℎ̄)Φ𝛼(𝑡), (3.16)

where Ψ𝛼(𝑡) are the Floquet states (i.e., the set of wave function solutions to the Schrödinger equation), Φ𝛼(𝑡) =
Φ𝛼(𝑡+𝑇) are the periodic Floquet modes, and 𝜖𝛼 are the quasienergy levels. The quasienergy levels are constants
in time, but only uniquely defined up to multiples of 2𝜋/𝑇 (i.e., unique value in the interval [0, 2𝜋/𝑇]).

If we know the Floquet modes (for 𝑡 ∈ [0, 𝑇]) and the quasienergies for a particular 𝐻(𝑡), we can easily
decompose any initial wavefunction Ψ(𝑡 = 0) in the Floquet states and immediately obtain the solution for
arbitrary 𝑡

Ψ(𝑡) =
∑︁
𝛼

𝑐𝛼Ψ𝛼(𝑡) =
∑︁
𝛼

𝑐𝛼 exp(−𝑖𝜖𝛼𝑡/ℎ̄)Φ𝛼(𝑡), (3.17)

where the coefficients 𝑐𝛼 are determined by the initial wavefunction Ψ(0) =
∑︀

𝛼 𝑐𝛼Ψ𝛼(0).
This formalism is useful for finding Ψ(𝑡) for a given 𝐻(𝑡) only if we can obtain the Floquet modes Φ𝑎(𝑡) and

quasienergies 𝜖𝛼 more easily than directly solving (3.15). By substituting (3.16) into the Schrödinger equation
(3.15) we obtain an eigenvalue equation for the Floquet modes and quasienergies

ℋ(𝑡)Φ𝛼(𝑡) = 𝜖𝛼Φ𝛼(𝑡), (3.18)

where ℋ(𝑡) = 𝐻(𝑡) − 𝑖ℎ̄𝜕𝑡. This eigenvalue problem could be solved analytically or numerically, but in QuTiP
we use an alternative approach for numerically finding the Floquet states and quasienergies [see e.g. Creffield
et al., Phys. Rev. B 67, 165301 (2003)]. Consider the propagator for the time-dependent Schrödinger equation
(3.15), which by definition satisfies

𝑈(𝑇 + 𝑡, 𝑡)Ψ(𝑡) = Ψ(𝑇 + 𝑡).

Inserting the Floquet states from (3.16) into this expression results in

𝑈(𝑇 + 𝑡, 𝑡) exp(−𝑖𝜖𝛼𝑡/ℎ̄)Φ𝛼(𝑡) = exp(−𝑖𝜖𝛼(𝑇 + 𝑡)/ℎ̄)Φ𝛼(𝑇 + 𝑡),

or, since Φ𝛼(𝑇 + 𝑡) = Φ𝛼(𝑡),

𝑈(𝑇 + 𝑡, 𝑡)Φ𝛼(𝑡) = exp(−𝑖𝜖𝛼𝑇/ℎ̄)Φ𝛼(𝑡) = 𝜂𝛼Φ𝛼(𝑡),

which shows that the Floquet modes are eigenstates of the one-period propagator. We can therefore find the
Floquet modes and quasienergies 𝜖𝛼 = −ℎ̄ arg(𝜂𝛼)/𝑇 by numerically calculating 𝑈(𝑇 + 𝑡, 𝑡) and diagonalizing
it. In particular this method is useful to find Φ𝛼(0) by calculating and diagonalize 𝑈(𝑇, 0).

The Floquet modes at arbitrary time 𝑡 can then be found by propagating Φ𝛼(0) to Φ𝛼(𝑡) using the wave
function propagator 𝑈(𝑡, 0)Ψ𝛼(0) = Ψ𝛼(𝑡), which for the Floquet modes yields

𝑈(𝑡, 0)Φ𝛼(0) = exp(−𝑖𝜖𝛼𝑡/ℎ̄)Φ𝛼(𝑡),

so that Φ𝛼(𝑡) = exp(𝑖𝜖𝛼𝑡/ℎ̄)𝑈(𝑡, 0)Φ𝛼(0). Since Φ𝛼(𝑡) is periodic we only need to evaluate it for 𝑡 ∈ [0, 𝑇], and
from Φ𝛼(𝑡 ∈ [0, 𝑇]) we can directly evaluate Φ𝛼(𝑡), Ψ𝛼(𝑡) and Ψ(𝑡) for arbitrary large 𝑡.

60

Floquet formalism in QuTiP

QuTiP provides a family of functions to calculate the Floquet modes and quasi energies, Floquet state de-
composition, etc., given a time-dependent Hamiltonian on the callback format, list-string format and list-callback
format (see, e.g., qutip.mesolve for details).

Consider for example the case of a strongly driven two-level atom, described by the Hamiltonian

𝐻(𝑡) = −1

2
∆𝜎𝑥 − 1

2
𝜖0𝜎𝑧 +

1

2
𝐴 sin(𝜔𝑡)𝜎𝑧. (3.19)

In QuTiP we can define this Hamiltonian as follows:

In [1]: delta = 0.2 * 2*np.pi; eps0 = 1.0 * 2*np.pi; A = 2.5 * 2*np.pi; omega = 1.0 * 2*np.pi

In [2]: H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()

In [3]: H1 = A/2.0 * sigmaz()

In [4]: args = {'w': omega}

In [5]: H = [H0, [H1, 'sin(w * t)']]

The 𝑡 = 0 Floquet modes corresponding to the Hamiltonian (3.19) can then be calculated using the
qutip.floquet.floquet_modes function, which returns lists containing the Floquet modes and the
quasienergies

In [6]: T = 2*pi / omega

In [7]: f_modes_0, f_energies = floquet_modes(H, T, args)

In [8]: f_energies
Out[8]: array([-2.83131212, 2.83131212])

In [9]: f_modes_0
Out[9]:
[Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[0.72964231+0.j]
[-0.39993746+0.554682j]],

Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[0.39993746+0.554682j]
[0.72964231+0.j]]]

For some problems interesting observations can be draw from the quasienergy levels alone. Consider for
example the quasienergies for the driven two-level system introduced above as a function of the driving amplitude,
calculated and plotted in the following example. For certain driving amplitudes the quasienergy levels cross.
Since the the quasienergies can be associated with the time-scale of the long-term dynamics due that the driving,
degenerate quasienergies indicates a “freezing” of the dynamics (sometimes known as coherent destruction of
tunneling).

In [10]: delta = 0.2 * 2*np.pi; eps0 = 0.0 * 2*np.pi

In [11]: omega = 1.0 * 2*np.pi; A_vec = np.linspace(0, 10, 100) * omega;

In [12]: T = (2*pi)/omega

In [13]: tlist = np.linspace(0.0, 10 * T, 101)

In [14]: psi0 = basis(2,0)

In [15]: q_energies = np.zeros((len(A_vec), 2))

61

In [16]: H0 = delta/2.0 * sigmaz() - eps0/2.0 * sigmax()

In [17]: args = omega

In [18]: for idx, A in enumerate(A_vec):
....: H1 = A/2.0 * sigmax()
....: H = [H0, [H1, lambda t, w: sin(w*t)]]
....: f_modes, f_energies = floquet_modes(H, T, args, True)
....: q_energies[idx,:] = f_energies
....:

In [19]: figure()
Out[19]: <matplotlib.figure.Figure at 0x10b198b90>

In [20]: plot(A_vec/omega, q_energies[:,0] / delta, 'b', A_vec/omega, q_energies[:,1] / delta, 'r')
Out[20]:
[<matplotlib.lines.Line2D at 0x107b30ed0>,
<matplotlib.lines.Line2D at 0x107b30610>]

In [21]: xlabel(r'A/ω')
Out[21]: <matplotlib.text.Text at 0x107c75b10>

In [22]: ylabel(r'Quasienergy / Δ')
Out[22]: <matplotlib.text.Text at 0x107b30050>

In [23]: title(r'Floquet quasienergies')
Out[23]: <matplotlib.text.Text at 0x105dd4590>

In [24]: show()

Given the Floquet modes at 𝑡 = 0, we obtain the Floquet mode at some later time 𝑡 using the function
qutip.floquet.floquet_mode_t:

In [25]: f_modes_t = floquet_modes_t(f_modes_0, f_energies, 2.5, H, T, args)

In [26]: f_modes_t
Out[26]:
[Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket

62

Qobj data =
[[-0.89630512-0.23191946j]
[0.37793106-0.00431336j]],

Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[-0.37793106-0.00431336j]
[-0.89630512+0.23191946j]]]

The purpose of calculating the Floquet modes is to find the wavefunction solution to the original problem
(3.19) given some initial state |𝜓0⟩. To do that, we first need to decompose the initial state in the Floquet states,
using the function qutip.floquet.floquet_state_decomposition

In [27]: psi0 = rand_ket(2)

In [28]: f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)

In [29]: f_coeff
Out[29]:
[(-0.46270277543605265+0.49439762918280311j),
(-0.56466987689016934+0.47183159707149747j)]

and given this decomposition of the initial state in the Floquet states we can easily eval-
uate the wavefunction that is the solution to (3.19) at an arbitrary time 𝑡 using the function
qutip.floquet.floquet_wavefunction_t

In [30]: t = 10 * np.random.rand()

In [31]: psi_t = floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T, args)

In [32]: psi_t
Out[32]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[0.60556819-0.05015488j]
[0.63266806+0.48010705j]]

The following example illustrates how to use the functions introduced above to calculate and plot the time-
evolution of (3.19).

from qutip import *
from scipy import *

delta = 0.2 * 2*pi; eps0 = 1.0 * 2*pi
A = 0.5 * 2*pi; omega = 1.0 * 2*pi
T = (2*pi)/omega
tlist = linspace(0.0, 10 * T, 101)
psi0 = basis(2,0)

H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 * sigmaz()
args = {'w': omega}
H = [H0, [H1, lambda t,args: sin(args['w'] * t)]]

find the floquet modes for the time-dependent hamiltonian
f_modes_0,f_energies = floquet_modes(H, T, args)

decompose the inital state in the floquet modes
f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)

calculate the wavefunctions using the from the floquet modes
p_ex = zeros(len(tlist))
for n, t in enumerate(tlist):

psi_t = floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T, args)

63

p_ex[n] = expect(num(2), psi_t)

For reference: calculate the same thing with mesolve
p_ex_ref = mesolve(H, psi0, tlist, [], [num(2)], args).expect[0]

plot the results
from pylab import *
plot(tlist, real(p_ex), 'ro', tlist, 1-real(p_ex), 'bo')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet P_1", "Floquet P_0", "Lindblad P_1", "Lindblad P_0"))
show()

0 2 4 6 8 10
Time

0.0

0.2

0.4

0.6

0.8

1.0

O
cc

u
p
a
ti

o
n
 p

ro
b
a
b
ili

ty

Floquet P1

Floquet P0

Lindblad P1

Lindblad P0

Pre-computing the Floquet modes for one period

When evaluating the Floquet states or the wavefunction at many points in time it is useful to pre-compute
the Floquet modes for the first period of the driving with the required resolution. In QuTiP the function
qutip.floquet.floquet_modes_table calculates a table of Floquet modes which later can be used
together with the function qutip.floquet.floquet_modes_t_lookup to efficiently lookup the Floquet
mode at an arbitrary time. The following example illustrates how the example from the previous section can be
solved more efficiently using these functions for pre-computing the Floquet modes.

from qutip import *
from scipy import *

delta = 0.0 * 2*pi; eps0 = 1.0 * 2*pi
A = 0.25 * 2*pi; omega = 1.0 * 2*pi
T = (2*pi)/omega
tlist = linspace(0.0, 10 * T, 101)

64

psi0 = basis(2,0)

H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 * sigmax()
args = {'w': omega}
H = [H0, [H1, lambda t,args: sin(args['w'] * t)]]

find the floquet modes for the time-dependent hamiltonian
f_modes_0,f_energies = floquet_modes(H, T, args)

decompose the inital state in the floquet modes
f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)

calculate the wavefunctions using the from the floquet modes
f_modes_table_t = floquet_modes_table(f_modes_0, f_energies, tlist, H, T, args)
p_ex = zeros(len(tlist))
for n, t in enumerate(tlist):

f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
psi_t = floquet_wavefunction(f_modes_t, f_energies, f_coeff, t)
p_ex[n] = expect(num(2), psi_t)

For reference: calculate the same thing with mesolve
p_ex_ref = mesolve(H, psi0, tlist, [], [num(2)], args).expect[0]

plot the results
from pylab import *
plot(tlist, real(p_ex), 'ro', tlist, 1-real(p_ex), 'bo')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet P_1", "Floquet P_0", "Lindblad P_1", "Lindblad P_0"))
show()

65

0 2 4 6 8 10
Time

0.0

0.2

0.4

0.6

0.8

1.0
O

cc
u
p
a
ti

o
n
 p

ro
b
a
b
ili

ty

Floquet P1

Floquet P0

Lindblad P1

Lindblad P0

Note that the parameters and the Hamiltonian used in this example is not the same as in the previous section,
and hence the different appearance of the resulting figure.

For convenience, all the steps described above for calculating the evolution of a quantum system using the
Floquet formalisms are encapsulated in the function qutip.floquet.fsesolve. Using this function, we
could have achieved the same results as in the examples above using:

output = fsesolve(H, psi0, times, [num(2)], args)
p_ex = output.expect[0]

Floquet theory for dissipative evolution

A driven system that is interacting with its environment is not necessarily well described by the standard Lindblad
master equation, since its dissipation process could be time-dependent due to the driving. In such cases a rigorious
approach would be to take the driving into account when deriving the master equation. This can be done in many
different ways, but one way common approach is to derive the master equation in the Floquet basis. That approach
results in the so-called Floquet-Markov master equation, see Grifoni et al., Physics Reports 304, 299 (1998) for
details.

The Floquet-Markov master equation in QuTiP

The QuTiP function qutip.floquet.fmmesolve implements the Floquet-Markov master equa-
tion. It calculates the dynamics of a system given its initial state, a time-dependent hamiltonian,
a list of operators through which the system couples to its environment and a list of correspond-
ing spectral-density functions that describes the environment. In contrast to the qutip.mesolve and
qutip.mcsolve, and the qutip.floquet.fmmesolve does characterize the environment with dissipa-
tion rates, but extract the strength of the coupling to the environment from the noise spectral-density func-
tions and the instantaneous Hamiltonian parameters (similar to the Bloch-Redfield master equation solver
qutip.bloch_redfield.brmesolve).

Note: Currently the qutip.floquet.fmmesolve can only accept a single environment coupling operator

66

and spectral-density function.

The noise spectral-density function of the environment is implemented as a Python callback function that is
passed to the solver. For example:

>>> gamma1 = 0.1
>>> def noise_spectrum(omega):
>>> return 0.5 * gamma1 * omega/(2*pi)

The other parameters are similar to the qutip.mesolve and qutip.mcsolve, and the same format for
the return value is used qutip.solver.Result. The following example extends the example studied above,
and uses qutip.floquet.fmmesolve to introduce dissipation into the calculation

from qutip import *
from scipy import *

delta = 0.0 * 2*pi; eps0 = 1.0 * 2*pi
A = 0.25 * 2*pi; omega = 1.0 * 2*pi
T = (2*pi)/omega
tlist = linspace(0.0, 20 * T, 101)
psi0 = basis(2,0)

H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 * sigmax()
args = {'w': omega}
H = [H0, [H1, lambda t,args: sin(args['w'] * t)]]

noise power spectrum
gamma1 = 0.1
def noise_spectrum(omega):

return 0.5 * gamma1 * omega/(2*pi)

find the floquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = floquet_modes(H, T, args)

precalculate mode table
f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,

linspace(0, T, 500 + 1), H, T, args)

solve the floquet-markov master equation
output = fmmesolve(H, psi0, tlist, [sigmax()], [], [noise_spectrum], T, args)

calculate expectation values in the computational basis
p_ex = zeros(shape(tlist), dtype=complex)
for idx, t in enumerate(tlist):

f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
p_ex[idx] = expect(num(2), output.states[idx].transform(f_modes_t, True))

For reference: calculate the same thing with mesolve
output = mesolve(H, psi0, tlist, [sqrt(gamma1) * sigmax()], [num(2)], args)
p_ex_ref = output.expect[0]

plot the results
from pylab import *
plot(tlist, real(p_ex), 'r--', tlist, 1-real(p_ex), 'b--')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet P_1", "Floquet P_0", "Lindblad P_1", "Lindblad P_0"))
show()

67

0 5 10 15 20
Time

0.2

0.0

0.2

0.4

0.6

0.8

1.0
O

cc
u
p
a
ti

o
n
 p

ro
b
a
b
ili

ty

Floquet P1

Floquet P0

Lindblad P1

Lindblad P0

Alternatively, we can let the qutip.floquet.fmmesolve function transform the density matrix at each
time step back to the computational basis, and calculating the expectation values for us, but using:

output = fmmesolve(H, psi0, times, [sigmax()], [num(2)], [noise_spectrum], T, args)
p_ex = output.expect[0]

Setting Options for the Dynamics Solvers

Occasionally it is necessary to change the built in parameters of the dynamics solvers used by for example the
qutip.mesolve and qutip.mcsolve functions. The options for all dynamics solvers may be changed by
using the Options class qutip.solver.Options.

In [1]: options = Options()

the properties and default values of this class can be view via the print function:

In [2]: print(options)
Options:

atol: 1e-08
rtol: 1e-06
method: adams
order: 12
nsteps: 1000
first_step: 0
min_step: 0
max_step: 0
tidy: True
num_cpus: 0
norm_tol: 0.001
norm_steps: 5

68

rhs_filename: None
rhs_reuse: False
seeds: 0
rhs_with_state: False
average_expect: True
average_states: False
ntraj: 500
store_states: False
store_final_state: False

These properties are detailed in the following table. Assuming options = Options():
Property Default setting Description
options.atol 1e-8 Absolute tolerance
options.rtol 1e-6 Relative tolerance
options.method ‘adams’ Solver method. Can be ‘adams’ (non-stiff) or ‘bdf’ (stiff)
options.order 12 Order of solver. Must be <=12 for ‘adams’ and <=5 for

‘bdf’
options.nsteps 1000 Max. number of steps to take for each interval
options.first_step 0 Size of initial step. 0 = determined automatically by solver.
options.min_step 0 Minimum step size. 0 = determined automatically by solver.
options.max_step 0 Maximum step size. 0 = determined automatically by

solver.
options.tidy True Whether to run tidyup function on time-independent

Hamiltonian.
options.num_cpus installed num of

processors
Integer number of cpu’s used by mcsolve.

op-
tions.rhs_filename

None RHS filename when using compiled time-dependent
Hamiltonians.

options.rhs_reuse False Reuse compiled RHS function. Useful for repeatative tasks.
options.gui True (if GUI) Use the mcsolve progessbar. Defaults to False on Windows.
options.mc_avg True Average over trajectories for expectation values from

mcsolve.
As an example, let us consider changing the number of processors used, turn the GUI off, and strengthen the

absolute tolerance. There are two equivalent ways to do this using the Options class. First way,
or one can use an inline method,
Note that the order in which you input the options does not matter. Using either method, the resulting options

variable is now:

In [3]: print(options)
Options:

atol: 1e-08
rtol: 1e-06
method: adams
order: 12
nsteps: 1000
first_step: 0
min_step: 0
max_step: 0
tidy: True
num_cpus: 0
norm_tol: 0.001
norm_steps: 5
rhs_filename: None
rhs_reuse: False
seeds: 0
rhs_with_state: False
average_expect: True
average_states: False
ntraj: 500

69

store_states: False
store_final_state: False

To use these new settings we can use the keyword argument options in either the func:qutip.mesolve and
qutip.mcsolve function. We can modify the last example as:

>>> mesolve(H0, psi0, tlist, c_op_list, [sigmaz()], options=options)
>>> mesolve(hamiltonian_t, psi0, tlist, c_op_list, [sigmaz()], H_args, options=options)

or:

>>> mcsolve(H0, psi0, tlist, ntraj,c_op_list, [sigmaz()], options=options)
>>> mcsolve(hamiltonian_t, psi0, tlist, ntraj, c_op_list, [sigmaz()], H_args, options=options)

3.6 Solving for Steady-State Solutions

Introduction

For time-independent open quantum systems with decay rates larger than the corresponding excitation rates, the
system will tend toward a steady state as 𝑡→ ∞ that satisfies the equation

𝑑𝜌𝑠𝑠
𝑑𝑡

= ℒ𝜌𝑠𝑠 = 0.

Although the requirement for time-independence seems quite resitrictive, one can often employ a transformation
to the interaction picture that yields a time-independent Hamiltonian. For many these systems, solving for the
asymptotic density matrix 𝜌𝑠𝑠 can be achieved using direct or iterative solution methods faster than using master
equation or Monte Carlo simulations. Although the steady state equation has a simple mathematical form, the
properties of the Liouvillian operator are such that the solutions to this equation are anything but straightforward
to find.

Steady State Solutions for Arbitrary Systems

Steady State solvers in QuTiP

In QuTiP, the steady-state solution for a system Hamiltonian or Liouvillian is given by
qutip.steadystate.steadystate. This function implements a number of different methods for
finding the steady state, each with their own pros and cons, where the method used can be chosen using the
method keyword argument.

Available Steady-State Methods:
Method Keyword Description
Direct
(default)

‘direct’ Direct solution solving 𝐴𝑥 = 𝑏 via sparse LU decomposition.

Eigenvalue ‘eigen’ Iteratively find the eigenvector corresponding to the zero eigenvalue of ℒ.
Inverse-
Power

‘power’ Iteratively solve for the steady-state solution using the inverse-power method.

GMRES ‘iterative-
gmres’

Iteratively solve for the steady-state solution using the GMRES method and
optional preconditioner.

LGMRES ‘iterative-
lgmres’

Iteratively solve for the steady-state solution using the LGMRES method and
optional preconditioner.

BICGSTAB ‘iterative-
bicgstab’

Iteratively solve for the steady-state solution using the BICGSTAB method
and optional preconditioner.

SVD ‘svd’ Steady-state solution via the SVD of the Liouvillian represented by a dense
matrix.

The function qutip.steadystate.steadystate can take either a Hamiltonian and a list of collapse
operators as input, generating internally the corresponding Liouvillian super operator in Lindblad form, or alter-
natively, an arbitrary Liouvillian passed by the user. When possible, we recommend passing the Hamiltonian and
collapse operators to qutip.steadystate.steadystate, and letting the function automatically build the
Liouvillian for the system.

70

Using the Steadystate Solver

Solving for the steady state solution to the Lindblad master equation for a general system with
qutip.steadystate.steadystate can be accomplished using:

>>> rho_ss = steadystate(H, c_ops)

where H is a quantum object representing the system Hamiltonian, and c_ops is a list of quantum objects for
the system collapse operators. The output, labeled as rho_ss, is the steady-state solution for the systems. If no
other keywords are passed to the solver, the default ‘direct’ method is used, generating a solution that is exact to
machine precision at the expense of a large memory requirement. The large amount of memory need for the direct
LU decomposition method stems from the large bandwidth of the system Liouvillian and the correspondingly
large fill-in (extra nonzero elements) generated in the LU factors. This fill-in can be reduced by using bandwidth
minimization algorithms such as those discussed in Additional Solver Arguments. Additional parameters may be
used by calling the steady-state solver as:

>>> rho_ss = steadystate(H, c_ops, method='power', use_rcm=True)

where method=’power’ indicates that we are using the inverse-power solution method, and
use_rcm=True turns on the bandwidth minimization routine.

Although it is not obvious, the ’direct’, eigen, and ’power’ methods all use an LU decompo-
sition internally and thus suffer from a large memory overhead. In contrast, iterative methods such as the
’iterative-gmres’, ’iterative-lgmres’, and ’iterative-bicgstab’ methods do not factor
the matrix and thus take less memory than these previous methods and allowing, in principle, for extremely large
system sizes. The downside is that these methods can take much longer than the direct method as the condition
number of the Liouvillian matrix is large, indicating that these iterative methods require a large number of itera-
tions for convergence. To overcome this, one can use a preconditioner 𝑀 that solves for an approximate inverse
for the (modified) Liouvillian, thus better conditioning the problem, leading to faster convergence. The use of a
preconditioner can actually make these iterative methods faster than the other solution methods. The problem with
precondioning is that it is only well defined for Hermitian matrices. Since the Liouvillian is non-Hermitian, the
ability to find a good preconditioner is not guaranteed. And moreover, if a preconditioner is found, it is not guar-
anteed to have a good condition number. QuTiP can make use of an incomplete LU preconditioner when using the
iterative ’gmres’, ’lgmres’, and ’bicgstab’ solvers by setting use_precond=True. The precondi-
tioner optionally makes use of a combination of symmetric and anti-symmetric matrix permutations that attempt
to improve the preconditioning process. These features are discussed in the Additional Solver Arguments section.
Even with these state-of-the-art permutations, the generation of a successful preconditoner for non-symmetric
matrices is currently a trial-and-error process due to the lack of mathematical work done in this area. It is always
recommended to begin with the direct solver with no additional arguments before selecting a different method.

Finding the steady-state solution is not limited to the Lindblad form of the master equation. Any time-
independent Liouvillian constructed from a Hamiltonian and collapse operators can be used as an input:

>>> rho_ss = steadystate(L)

where L is the Louvillian. All of the additional arguments can also be used in this case.

Additional Solver Arguments

The following additional solver arguments are available for the steady-state solver:

71

Key-
word

Options (default listed
first)

Description

method ‘direct’, ‘eigen’, ‘power’,
‘iterative-gmres’,’iterative-
lgmres’,
‘svd’

Method used for solving for the steady-state density matrix.

sparse True, False Use sparse version of direct solver.
weight None Allows the user to define the weighting factor used in the

’direct’, ’GMRES’, and ’LGMRES’ solvers.
permc_spec‘COLAMD’, ‘NATURAL’ Column ordering used in the sparse LU decomposition.
use_rcm False, True Use a Reverse Cuthill-Mckee reordering to minimize the bandwidth

of the modified Liouvillian used in the LU decomposition. If
use_rcm=True then the column ordering is set to ’Natural’
automatically unless explicitly set.

use_umfpackFalse, True Use the umfpack solver rather than the default superLU. on SciPy
0.14+, this option requires installing the scikits.umfpack extension.

use_precondFalse, True Attempt to generate a preconditioner when using the
’iterative-gmres’ and ’iterative-lgmres’ methods.

M None, sparse_matrix,
LinearOperator

A user defined preconditioner, if any.

use_wbm False, True Use a Weighted Bipartite Matching algorithm to attempt to make the
modified Liouvillian more diagonally dominate, and thus for
favorable for preconditioning. Set to True automatically when
using a iterative method, unless explicitly set.

tol 1e-9 Tolerance used in finding the solution for all methods expect
’direct’ and ’svd’.

max-
iter

10000 Maximum number of iterations to perform for all methods expect
’direct’ and ’svd’.

fill_factor 10 Upper-bound on the allowed fill-in for the approximate inverse
preconditioner. This value may need to be set much higher than this
in some cases.

drop_tol 1e-3 Sets the threshold for the relative magnitude of preconditioner
elements that should be dropped. A lower number yields a more
accurate approximate inverse at the expense of fill-in and increased
runtime.

diag_pivot_threshNone Sets the threshold between [0, 1] for which diagonal elements are
considered acceptable pivot points when using a preconditioner.

ILU_MILU‘smilu_2’ Selects the incomplete LU decomposition method algorithm used.
Further information can be found in the qutip.steadystate.steadystate docstrings.

Example: Harmonic Oscillator in Thermal Bath

A simple example of a system that reaches a steady state is a harmonic oscillator coupled to a thermal environment.
Below we consider a harmonic oscillator, initially in the |10⟩ number state, and weakly coupled to a thermal
environment characterized by an average particle expectation value of ⟨𝑛⟩ = 2. We calculate the evolution via
master equation and Monte Carlo methods, and see that they converge to the steady-state solution. Here we choose
to perform only a few Monte Carlo trajectories so we can distinguish this evolution from the master-equation
solution.

In [1]: N = 20 # number of basis states to consider

In [2]: a = destroy(N)

In [3]: H = a.dag() * a

In [4]: psi0 = basis(N, 10) # initial state

In [5]: kappa = 0.1 # coupling to oscillator

72

In [6]: c_op_list = []

In [7]: n_th_a = 2 # temperature with average of 2 excitations

In [8]: rate = kappa * (1 + n_th_a)

In [9]: c_op_list.append(sqrt(rate) * a) # decay operators

In [10]: rate = kappa * n_th_a

In [11]: c_op_list.append(sqrt(rate) * a.dag()) # excitation operators

In [12]: final_state = steadystate(H, c_op_list)

In [13]: fexpt = expect(a.dag() * a, final_state)

In [14]: tlist = linspace(0, 50, 100)

In [15]: mcdata = mcsolve(H, psi0, tlist, c_op_list, [a.dag() * a], ntraj=100)
10.0%. Run time: 0.41s. Est. time left: 00:00:00:03
20.0%. Run time: 0.82s. Est. time left: 00:00:00:03
30.0%. Run time: 1.17s. Est. time left: 00:00:00:02
40.0%. Run time: 1.61s. Est. time left: 00:00:00:02
50.0%. Run time: 2.01s. Est. time left: 00:00:00:02
60.0%. Run time: 2.35s. Est. time left: 00:00:00:01
70.0%. Run time: 2.65s. Est. time left: 00:00:00:01
80.0%. Run time: 3.01s. Est. time left: 00:00:00:00
90.0%. Run time: 3.43s. Est. time left: 00:00:00:00
100.0%. Run time: 3.82s. Est. time left: 00:00:00:00
Total run time: 3.87s

In [16]: medata = mesolve(H, psi0, tlist, c_op_list, [a.dag() * a])

In [17]: figure()
Out[17]: <matplotlib.figure.Figure at 0x10dad5910>

In [18]: plot(tlist, mcdata.expect[0], tlist, medata.expect[0], lw=2)
Out[18]:
[<matplotlib.lines.Line2D at 0x10db8d750>,
<matplotlib.lines.Line2D at 0x10db8d9d0>]

In [19]: axhline(y=fexpt, color='r', lw=1.5) # ss expt. value as horiz line (= 2)
Out[19]: <matplotlib.lines.Line2D at 0x10da59150>

In [20]: ylim([0, 10])
Out[20]: (0, 10)

In [21]: xlabel('Time', fontsize=14)
Out[21]: <matplotlib.text.Text at 0x10da59cd0>

In [22]: ylabel('Number of excitations', fontsize=14)
Out[22]: <matplotlib.text.Text at 0x10da88a50>

In [23]: legend(('Monte-Carlo', 'Master Equation', 'Steady State'))
Out[23]: <matplotlib.legend.Legend at 0x10d932fd0>

In [24]: title('Decay of Fock state $\left|10\\rangle\\right.$' +
....: ' in a thermal environment with $\langle n\\rangle=2$')
....:

Out[24]: <matplotlib.text.Text at 0x10da84550>

In [25]: show()

73

3.7 An Overview of the Eseries Class

Exponential-series representation of time-dependent quantum objects

The eseries object in QuTiP is a representation of an exponential-series expansion of time-dependent quantum
objects (a concept borrowed from the quantum optics toolbox).

An exponential series is parameterized by its amplitude coefficients 𝑐𝑖 and rates 𝑟𝑖, so that the series takes the
form 𝐸(𝑡) =

∑︀
𝑖 𝑐𝑖𝑒

𝑟𝑖𝑡. The coefficients are typically quantum objects (type Qobj: states, operators, etc.), so that
the value of the eseries also is a quantum object, and the rates can be either real or complex numbers (describing
decay rates and oscillation frequencies, respectively). Note that all amplitude coefficients in an exponential series
must be of the same dimensions and composition.

In QuTiP, an exponential series object is constructed by creating an instance of the class qutip.eseries:

In [1]: es1 = eseries(sigmax(), 1j)

where the first argument is the amplitude coefficient (here, the sigma-X operator), and the second argument is
the rate. The eseries in this example represents the time-dependent operator 𝜎𝑥𝑒𝑖𝑡.

To add more terms to an qutip.eseries object we simply add objects using the + operator:

In [2]: omega=1.0

In [3]: es2 = (eseries(0.5 * sigmax(), 1j * omega) +
...: eseries(0.5 * sigmax(), -1j * omega))
...:

The qutip.eseries in this example represents the operator 0.5𝜎𝑥𝑒
𝑖𝜔𝑡 + 0.5𝜎𝑥𝑒

−𝑖𝜔𝑡, which is the expo-
nential series representation of 𝜎𝑥 cos(𝜔𝑡). Alternatively, we can also specify a list of amplitudes and rates when
the qutip.eseries is created:

In [4]: es2 = eseries([0.5 * sigmax(), 0.5 * sigmax()], [1j * omega, -1j * omega])

We can inspect the structure of an qutip.eseries object by printing it to the standard output console:

In [5]: es2
Out[5]:
ESERIES object: 2 terms

74

Hilbert space dimensions: [[2], [2]]
Exponent #0 = -1j
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 0.5]
[0.5 0.]]

Exponent #1 = 1j
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 0.5]
[0.5 0.]]

and we can evaluate it at time t by using the qutip.eseries.esval function:

In [6]: esval(es2, 0.0) # equivalent to es2.value(0.0)
Out[6]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 1.]
[1. 0.]]

or for a list of times [0.0, 1.0 * pi, 2.0 * pi]:

In [7]: times = [0.0, 1.0 * pi, 2.0 * pi]

In [8]: esval(es2, times) # equivalent to es2.value(times)
Out[8]:
array([Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 1.]
[1. 0.]],

Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. -1.]
[-1. 0.]],

Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 1.]
[1. 0.]]], dtype=object)

To calculate the expectation value of an time-dependent operator represented by an qutip.eseries, we
use the qutip.expect function. For example, consider the operator 𝜎𝑥 cos(𝜔𝑡) + 𝜎𝑧 sin(𝜔𝑡), and say we
would like to know the expectation value of this operator for a spin in its excited state (rho = fock_dm(2,1)
produce this state):

In [9]: es3 = (eseries([0.5*sigmaz(), 0.5*sigmaz()], [1j, -1j]) +
...: eseries([-0.5j*sigmax(), 0.5j*sigmax()], [1j, -1j]))
...:

In [10]: rho = fock_dm(2, 1)

In [11]: es3_expect = expect(rho, es3)

In [12]: es3_expect
Out[12]:
ESERIES object: 2 terms
Hilbert space dimensions: [[1, 1]]
Exponent #0 = -1j
(-0.5+0j)
Exponent #1 = 1j
(-0.5+0j)

75

In [13]: es3_expect.value([0.0, pi/2])
Out[13]: array([-1.00000000e+00, -6.12323400e-17])

Note the expectation value of the qutip.eseries object, expect(rho, es3), itself is an
qutip.eseries, but with amplitude coefficients that are C-numbers instead of quantum operators. To evaluate
the C-number qutip.eseries at the times times we use esval(es3_expect, times), or, equivalently,
es3_expect.value(times).

Applications of exponential series

The exponential series formalism can be useful for the time-evolution of quantum systems. One approach to
calculating the time evolution of a quantum system is to diagonalize its Hamiltonian (or Liouvillian, for dissipative
systems) and to express the propagator (e.g., exp(−𝑖𝐻𝑡)𝜌 exp(𝑖𝐻𝑡)) as an exponential series.

The QuTiP function qutip.essolve.ode2es and qutip.essolve use this method to evolve quantum
systems in time. The exponential series approach is particularly suitable for cases when the same system is to be
evolved for many different initial states, since the diagonalization only needs to be performed once (as opposed to
e.g. the ode solver that would need to be ran independently for each initial state).

As an example, consider a spin-1/2 with a Hamiltonian pointing in the 𝜎𝑧 direction, and that is subject to noise
causing relaxation. For a spin originally is in the up state, we can create an qutip.eseries object describing
its dynamics by using the qutip.es2ode function:

In [14]: psi0 = basis(2,1)

In [15]: H = sigmaz()

In [16]: L = liouvillian(H, [sqrt(1.0) * destroy(2)])

In [17]: es = ode2es(L, psi0)

The qutip.essolve.ode2es function diagonalizes the Liouvillian 𝐿 and creates an exponential series
with the correct eigenfrequencies and amplitudes for the initial state 𝜓0 (psi0).

We can examine the resulting qutip.eseries object by printing a text representation:

In [18]: es
Out[18]:
ESERIES object: 2 terms
Hilbert space dimensions: [[2], [2]]
Exponent #0 = (-1+0j)
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[-1. 0.]
[0. 1.]]

Exponent #1 = 0j
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 0.]]

or by evaluating it and arbitrary points in time (here at 0.0 and 1.0):

In [19]: es.value([0.0, 1.0])
Out[19]:
array([Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 1.]],

Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0.63212056 0.]
[0. 0.36787944]]], dtype=object)

and the expectation value of the exponential series can be calculated using the qutip.expect function:

76

In [20]: es_expect = expect(sigmaz(), es)

The result es_expect is now an exponential series with c-numbers as amplitudes, which easily can be evaluated
at arbitrary times:

In [21]: es_expect.value([0.0, 1.0, 2.0, 3.0])
Out[21]: array([-1. , 0.26424112, 0.72932943, 0.90042586])

In [22]: times = linspace(0.0, 10.0, 100)

In [23]: sz_expect = es_expect.value(times)

In [24]: from pylab import *

In [25]: plot(times, sz_expect, lw=2);

In [26]: xlabel("Time", fontsize=16)
....: ylabel("Expectation value of sigma-z", fontsize=16);
....:

In [28]: title("The expectation value of the σ_{z} operator", fontsize=16);

3.8 Two-time correlation functions

With the QuTiP time-evolution functions (for example qutip.mesolve and qutip.mcsolve), a state vector
or density matrix can be evolved from an initial state at 𝑡0 to an arbitrary time 𝑡, 𝜌(𝑡) = 𝑉 (𝑡, 𝑡0) {𝜌(𝑡0)}, where
𝑉 (𝑡, 𝑡0) is the propagator defined by the equation of motion. The resulting density matrix can then be used to
evaluate the expectation values of arbitrary combinations of same-time operators.

To calculate two-time correlation functions on the form ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩, we can use the quantum regression
theorem (see, e.g., [Gar03]) to write

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ = Tr [𝐴𝑉 (𝑡+ 𝜏, 𝑡) {𝐵𝜌(𝑡)}] = Tr [𝐴𝑉 (𝑡+ 𝜏, 𝑡) {𝐵𝑉 (𝑡, 0) {𝜌(0)}}]

We therefore first calculate 𝜌(𝑡) = 𝑉 (𝑡, 0) {𝜌(0)} using one of the QuTiP evolution solvers with 𝜌(0) as initial
state, and then again use the same solver to calculate 𝑉 (𝑡+ 𝜏, 𝑡) {𝐵𝜌(𝑡)} using 𝐵𝜌(𝑡) as initial state.

Note that if the intial state is the steady state, then 𝜌(𝑡) = 𝑉 (𝑡, 0) {𝜌ss} = 𝜌ss and

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ = Tr [𝐴𝑉 (𝑡+ 𝜏, 𝑡) {𝐵𝜌ss}] = Tr [𝐴𝑉 (𝜏, 0) {𝐵𝜌ss}] = ⟨𝐴(𝜏)𝐵(0)⟩ ,

which is independent of 𝑡, so that we only have one time coordinate 𝜏 .

77

QuTiP provides a family of functions that assists in the process of calculating two-time correlation functions.
The available functions and their usage is show in the table below. Each of these functions can use one of the
following evolution solvers: Master-equation, Exponential series and the Monte-Carlo. The choice of solver is
defined by the optional argument solver.

QuTiP function Correlation function
qutip.correlation.correlation or
qutip.correlation.correlation_2op_2t

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ or
⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩.

qutip.correlation.correlation_ss or
qutip.correlation.correlation_2op_1t

⟨𝐴(𝜏)𝐵(0)⟩ or
⟨𝐴(0)𝐵(𝜏)⟩.

qutip.correlation.correlation_4op_1t ⟨𝐴(0)𝐵(𝜏)𝐶(𝜏)𝐷(0)⟩.
qutip.correlation.correlation_4op_2t ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡+ 𝜏)𝐷(𝑡)⟩.

The most common use-case is to calculate correlation functions of the kind ⟨𝐴(𝜏)𝐵(0)⟩, in
which case we use the correlation function solvers that start from the steady state, e.g., the
qutip.correlation.correlation_2op_1t function. These correlation function sovlers return a vector
or matrix (in general complex) with the correlations as a function of the delays times.

Steadystate correlation function

The following code demonstrates how to calculate the ⟨𝑥(𝑡)𝑥(0)⟩ correlation for a leaky cavity with three different
relaxation rates.

In [1]: times = np.linspace(0,10.0,200)

In [2]: a = destroy(10)

In [3]: x = a.dag() + a

In [4]: H = a.dag() * a

In [5]: corr1 = correlation_ss(H, times, [np.sqrt(0.5) * a], x, x)

In [6]: corr2 = correlation_ss(H, times, [np.sqrt(1.0) * a], x, x)

In [7]: corr3 = correlation_ss(H, times, [np.sqrt(2.0) * a], x, x)

In [8]: figure()
Out[8]: <matplotlib.figure.Figure at 0x10b2196d0>

In [9]: plot(times, np.real(corr1), times, np.real(corr2), times, np.real(corr3))
Out[9]:
[<matplotlib.lines.Line2D at 0x10b4a3490>,
<matplotlib.lines.Line2D at 0x10b4a33d0>,
<matplotlib.lines.Line2D at 0x10b4fddd0>]

In [10]: legend(['0.5','1.0','2.0'])
Out[10]: <matplotlib.legend.Legend at 0x10df0d310>

In [11]: xlabel(r'Time t')
Out[11]: <matplotlib.text.Text at 0x10d29b1d0>

In [12]: ylabel(r'Correlation $\left<x(t)x(0)\right>$')
Out[12]: <matplotlib.text.Text at 0x10d263f90>

In [13]: show()

78

Emission spectrum

Given a correlation function ⟨𝐴(𝜏)𝐵(0)⟩ we can define the corresponding power spectrum as

𝑆(𝜔) =

∫︁ ∞

−∞
⟨𝐴(𝜏)𝐵(0)⟩ 𝑒−𝑖𝜔𝜏𝑑𝜏.

In QuTiP, we can calculate 𝑆(𝜔) using either qutip.correlation.spectrum_ss, which first calculates
the correlation function using the qutip.essolve.essolve solver and then performs the Fourier transform
semi-analytically, or we can use the function qutip.correlation.spectrum_correlation_fft to
numerically calculate the Fourier transform of a given correlation data using FFT.

The following example demonstrates how these two functions can be used to obtain the emission power spec-
trum.

import numpy as np
from qutip import *
import pylab as plt

N = 4 # number of cavity fock states
wc = wa = 1.0 * 2 * np.pi # cavity and atom frequency
g = 0.1 * 2 * np.pi # coupling strength
kappa = 0.75 # cavity dissipation rate
gamma = 0.25 # atom dissipation rate

Jaynes-Cummings Hamiltonian
a = tensor(destroy(N), qeye(2))
sm = tensor(qeye(N), destroy(2))
H = wc * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() * sm + a * sm.dag())

collapse operators
n_th = 0.25
c_ops = [np.sqrt(kappa * (1 + n_th)) * a, np.sqrt(kappa * n_th) * a.dag(), np.sqrt(gamma) * sm]

calculate the correlation function using the mesolve solver, and then fft to
obtain the spectrum. Here we need to make sure to evaluate the correlation
function for a sufficient long time and sufficiently high sampling rate so
that the discrete Fourier transform (FFT) captures all the features in the

79

resulting spectrum.
tlist = np.linspace(0, 100, 5000)
corr = correlation_ss(H, tlist, c_ops, a.dag(), a)
wlist1, spec1 = spectrum_correlation_fft(tlist, corr)

calculate the power spectrum using spectrum, which internally uses essolve
to solve for the dynamics (by default)
wlist2 = np.linspace(0.25, 1.75, 200) * 2 * np.pi
spec2 = spectrum(H, wlist2, c_ops, a.dag(), a)

plot the spectra
fig, ax = plt.subplots(1, 1)
ax.plot(wlist1 / (2 * np.pi), spec1, 'b', lw=2, label='eseries method')
ax.plot(wlist2 / (2 * np.pi), spec2, 'r--', lw=2, label='me+fft method')
ax.legend()
ax.set_xlabel('Frequency')
ax.set_ylabel('Power spectrum')
ax.set_title('Vacuum Rabi splitting')
ax.set_xlim(wlist2[0]/(2*np.pi), wlist2[-1]/(2*np.pi))
plt.show()

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Frequency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r

sp
e
ct

ru
m

Vacuum Rabi splitting

eseries method
me+fft method

Non-steadystate correlation function

More generally, we can also calculate correlation functions of the kind ⟨𝐴(𝑡1 + 𝑡2)𝐵(𝑡1)⟩, i.e., the correlation
function of a system that is not in its steadystate. In QuTiP, we can evoluate such correlation functions using the
function qutip.correlation.correlation_2op_2t. The default behavior of this function is to return
a matrix with the correlations as a function of the two time coordinates (𝑡1 and 𝑡2).

import numpy as np
from qutip import *

80

from pylab import *

times = np.linspace(0, 10.0, 200)
a = destroy(10)
x = a.dag() + a
H = a.dag() * a
alpha = 2.5
rho0 = coherent_dm(10, alpha)
corr = correlation_2op_2t(H, rho0, times, times, [np.sqrt(0.25) * a], x, x)

pcolor(corr)
xlabel(r'Time t_2')
ylabel(r'Time t_1')
title(r'Correlation $\left<x(t)x(0)\right>$')
show()

0 50 100 150 200
Time t2

0

50

100

150

200

T
im

e
 t

1

Correlation 〈x(t)x(0)〉

However, in some cases we might be interested in the correlation functions on the form
⟨𝐴(𝑡1 + 𝑡2)𝐵(𝑡1)⟩, but only as a function of time coordinate 𝑡2. In this case we can also use the
qutip.correlation.correlation_2op_2t function, if we pass the density matrix at time 𝑡1 as sec-
ond argument, and None as third argument. The qutip.correlation.correlation_2op_2t function
then returns a vector with the correlation values corresponding to the times in taulist (the fourth argument).

Example: first-order optical coherence function

This example demonstrates how to calculate a correlation function on the form ⟨𝐴(𝜏)𝐵(0)⟩ for a non-steady initial
state. Consider an oscillator that is interacting with a thermal environment. If the oscillator initially is in a coherent
state, it will gradually decay to a thermal (incoherent) state. The amount of coherence can be quantified using the

first-order optical coherence function 𝑔(1)(𝜏) =
⟨𝑎†(𝜏)𝑎(0)⟩√

⟨𝑎†(𝜏)𝑎(𝜏)⟩⟨𝑎†(0)𝑎(0)⟩
. For a coherent state |𝑔(1)(𝜏)| = 1, and

for a completely incoherent (thermal) state 𝑔(1)(𝜏) = 0. The following code calculates and plots 𝑔(1)(𝜏) as a
function of 𝜏 .

81

import numpy as np
from qutip import *
from pylab import *

N = 15
taus = np.linspace(0,10.0,200)
a = destroy(N)
H = 2 * np.pi * a.dag() * a

collapse operator
G1 = 0.75
n_th = 2.00 # bath temperature in terms of excitation number
c_ops = [np.sqrt(G1 * (1 + n_th)) * a, np.sqrt(G1 * n_th) * a.dag()]

start with a coherent state
rho0 = coherent_dm(N, 2.0)

first calculate the occupation number as a function of time
n = mesolve(H, rho0, taus, c_ops, [a.dag() * a]).expect[0]

calculate the correlation function G1 and normalize with n to obtain g1
G1 = correlation_2op_2t(H, rho0, None, taus, c_ops, a.dag(), a)
g1 = G1 / np.sqrt(n[0] * n)

plot(taus, g1, 'b')
plot(taus, n, 'r')
title('Decay of a coherent state to an incoherent (thermal) state')
xlabel(r'τ')
legend((r'First-order coherence function $g^{(1)}(\tau)$',

r'occupation number $n(\tau)$'))
show()

0 2 4 6 8 10
τ

1

0

1

2

3

4
Decay of a coherent state to an incoherent (thermal) state

First-order coherence function g(1) (τ)

occupation number n(τ)

82

For convenience, the steps for calculating the first-order coherence function have been collected in the function
qutip.correlation.coherence_function_g1.

Example: second-order optical coherence function

The second-order optical coherence function, with time-delay 𝜏 , is defined as

𝑔(2)(𝜏) =
⟨𝑎†(0)𝑎†(𝜏)𝑎(𝜏)𝑎(0)⟩

⟨𝑎†(0)𝑎(0)⟩2

For a coherent state 𝑔(2)(𝜏) = 1, for a thermal state 𝑔(2)(𝜏 = 0) = 2 and it decreases as a function of time
(bunched photons, they tend to appear together), and for a Fock state with 𝑛 photons 𝑔(2)(𝜏 = 0) = 𝑛(𝑛−1)/𝑛2 <
1 and it increases with time (anti-bunched photons, more likely to arrive separated in time).

To calculate this type of correlation function with QuTiP, we can use
qutip.correlation.correlation_4op_1t, which computes a correlation function on the form
⟨𝐴(0)𝐵(𝜏)𝐶(𝜏)𝐷(0)⟩ (four operators, one delay-time vector).

The following code calculates and plots 𝑔(2)(𝜏) as a function of 𝜏 for a coherent, thermal and fock state.

import numpy as np
from qutip import *
import pylab as plt

N = 25
taus = np.linspace(0, 25.0, 200)
a = destroy(N)
H = 2 * np.pi * a.dag() * a

kappa = 0.25
n_th = 2.0 # bath temperature in terms of excitation number
c_ops = [np.sqrt(kappa * (1 + n_th)) * a, np.sqrt(kappa * n_th) * a.dag()]

states = [{'state': coherent_dm(N, np.sqrt(2)), 'label': "coherent state"},
{'state': thermal_dm(N, 2), 'label': "thermal state"},
{'state': fock_dm(N, 2), 'label': "Fock state"}]

fig, ax = plt.subplots(1, 1)

for state in states:
rho0 = state['state']

first calculate the occupation number as a function of time
n = mesolve(H, rho0, taus, c_ops, [a.dag() * a]).expect[0]

calculate the correlation function G2 and normalize with n(0)n(t) to
obtain g2
G2 = correlation_4op_1t(H, rho0, taus, c_ops, a.dag(), a.dag(), a, a)
g2 = G2 / (n[0] * n)

ax.plot(taus, np.real(g2), label=state['label'], lw=2)

ax.legend(loc=0)
ax.set_xlabel(r'τ')
ax.set_ylabel(r'$g^{(2)}(\tau)$')
plt.show()

83

0 5 10 15 20 25
τ

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
g(

2)
(τ

)

coherent state
thermal state
Fock state

For convenience, the steps for calculating the second-order coherence function have been collected in the
function qutip.correlation.coherence_function_g2.

3.9 Plotting on the Bloch Sphere

Important: Updated in QuTiP version 3.0.

Introduction

When studying the dynamics of a two-level system, it is often convent to visualize the state of the system by
plotting the state-vector or density matrix on the Bloch sphere. In QuTiP, we have created two different classes
to allow for easy creation and manipulation of data sets, both vectors and data points, on the Bloch sphere. The
qutip.Bloch class, uses Matplotlib to render the Bloch sphere, where as qutip.Bloch3d uses the Mayavi
rendering engine to generate a more faithful 3D reconstruction of the Bloch sphere.

The Bloch and Bloch3d Classes

In QuTiP, creating a Bloch sphere is accomplished by calling either:

In [1]: b = Bloch()

which will load an instance of the qutip.Bloch class, or using:

>>> b3d = Bloch3d()

that loads the qutip.Bloch3d version. Before getting into the details of these objects, we can simply plot
the blank Bloch sphere associated with these instances via:

84

In [2]: b.show()

or

In addition to the show() command, the Bloch class has the following functions:

85

Name Input Parameters (#=optional) Description
add_points(pnts,#meth) pnts list/array of (x,y,z) points, meth=’m’ (default

meth=’s’) will plot a collection of points as multi-
colored data points.

Adds a single or set of data points to be
plotted on the sphere.

add_states(state,#kind) state Qobj or list/array of Qobj’s representing state
or density matrix of a two-level system, kind (op-
tional) string specifying if state should be plotted
as point (‘point’) or vector (default).

Input multiple states as a list or array

add_vectors(vec) vec list/array of (x,y,z) points giving direction and
length of state vectors.

adds single or multiple vectors to plot.

clear() Removes all data from Bloch sphere.
Keeps customized figure properties.

save(#format,#dirc) format format (default=’png’) of output file, dirc
(default=cwd) output directory

Saves Bloch sphere to a file.

show() Generates Bloch sphere with given data.
As an example, we can add a single data point:

In [3]: pnt = [1/np.sqrt(3),1/np.sqrt(3),1/np.sqrt(3)]

In [4]: b.add_points(pnt)

In [5]: b.show()

and then a single vector:

In [6]: vec = [0,1,0]

In [7]: b.add_vectors(vec)

In [8]: b.show()

86

and then add another vector corresponding to the |up⟩ state:

In [9]: up = basis(2,0)

In [10]: b.add_states(up)

In [11]: b.show()

Notice that when we add more than a single vector (or data point), a different color will automatically be
applied to the later data set (mod 4). In total, the code for constructing our Bloch sphere with one vector, one state,
and a single data point is:

In [12]: pnt = [1/np.sqrt(3),1/np.sqrt(3),1/np.sqrt(3)]

In [13]: b.add_points(pnt)

In [14]: b.add_vectors(vec)

87

In [15]: b.add_states(up)

In [16]: b.show()

where we have removed the extra show() commands. Replacing b=Bloch() with b=Bloch3d() in the
above code generates the following 3D Bloch sphere.

We can also plot multiple points, vectors, and states at the same time by passing list or arrays instead of
individual elements. Before giving an example, we can use the clear() command to remove the current data from
our Bloch sphere instead of creating a new instance:

In [17]: b.clear()

In [18]: b.show()

88

Now on the same Bloch sphere, we can plot the three states associated with the x, y, and z directions:

In [19]: x = (basis(2,0)+(1+0j)*basis(2,1)).unit()

In [20]: y = (basis(2,0)+(0+1j)*basis(2,1)).unit()

In [21]: z = (basis(2,0)+(0+0j)*basis(2,1)).unit()

In [22]: b.add_states([x,y,z])

In [23]: b.show()

a similar method works for adding vectors:

In [24]: b.clear()

In [25]: vec = [[1,0,0],[0,1,0],[0,0,1]]

89

In [26]: b.add_vectors(vec)

In [27]: b.show()

Adding multiple points to the Bloch sphere works slightly differently than adding multiple states or vectors.
For example, lets add a set of 20 points around the equator (after calling clear()):

In [28]: xp = [np.cos(th) for th in np.linspace(0, 2*pi, 20)]

In [29]: yp = [np.sin(th) for th in np.linspace(0, 2*pi, 20)]

In [30]: zp = np.zeros(20)

In [31]: pnts = [xp, yp, zp]

In [32]: b.add_points(pnts)

In [33]: b.show()

90

Notice that, in contrast to states or vectors, each point remains the same color as the initial point. This is
because adding multiple data points using the add_points function is interpreted, by default, to correspond to a
single data point (single qubit state) plotted at different times. This is very useful when visualizing the dynamics
of a qubit. An example of this is given in the example . If we want to plot additional qubit states we can call
additional add_points functions:

In [34]: xz = np.zeros(20)

In [35]: yz = [np.sin(th) for th in np.linspace(0, pi, 20)]

In [36]: zz = [np.cos(th) for th in np.linspace(0, pi, 20)]

In [37]: b.add_points([xz, yz, zz])

In [38]: b.show()

91

The color and shape of the data points is varied automatically by the Bloch class. Notice how the color and
point markers change for each set of data. Again, we have had to call add_points twice because adding more
than one set of multiple data points is not supported by the add_points function.

What if we want to vary the color of our points. We can tell the qutip.Bloch class to vary the color of
each point according to the colors listed in the b.point_color list (see Configuring the Bloch sphere below).
Again after clear():

In [39]: xp = [np.cos(th) for th in np.linspace(0, 2*pi, 20)]

In [40]: yp = [sin(th) for th in np.linspace(0, 2*pi, 20)]

In [41]: zp = np.zeros(20)

In [42]: pnts = [xp, yp, zp]

In [43]: b.add_points(pnts,'m') # <-- add a 'm' string to signify 'multi' colored points

In [44]: b.show()

Now, the data points cycle through a variety of predefined colors. Now lets add another set of points, but this
time we want the set to be a single color, representing say a qubit going from the |up⟩ state to the |down⟩ state in
the y-z plane:

In [45]: xz = np.zeros(20)

In [46]: yz = [np.sin(th) for th in np.linspace(0, pi ,20)]

In [47]: zz = [np.cos(th) for th in np.linspace(0, pi, 20)]

In [48]: b.add_points([xz, yz, zz]) # no 'm'

In [49]: b.show()

92

Again, the same plot can be generated using the qutip.Bloch3d class by replacing Blochwith Bloch3d:

A more slick way of using this ‘multi’ color feature is also given in the example, where we set the color of the
markers as a function of time.

Differences Between Bloch and Bloch3d

While in general the Bloch and Bloch3d classes are interchangeable, there are some important differences to
consider when choosing between them.

• The Bloch class uses Matplotlib to generate figures. As such, the data plotted on the sphere is in reality
just a 2D object. In contrast the Bloch3d class uses the 3D rendering engine from VTK via mayavi to
generate the sphere and the included data. In this sense the Bloch3d class is much more advanced, as
objects are rendered in 3D leading to a higher quality figure.

93

• Only the Bloch class can be embedded in a Matplotlib figure window. Thus if you want to combine a
Bloch sphere with another figure generated in QuTiP, you can not use Bloch3d. Of course you can always
post-process your figures using other software to get the desired result.

• Due to limitations in the rendering engine, the Bloch3d class does not support LaTex for text. Again, you
can get around this by post-processing.

• The user customizable attributes for the Bloch and Bloch3d classes are not identical. Therefore, if you
change the properties of one of the classes, these changes will cause an exception if the class is switched.

Configuring the Bloch sphere

Bloch Class Options

At the end of the last section we saw that the colors and marker shapes of the data plotted on the Bloch sphere are
automatically varied according to the number of points and vectors added. But what if you want a different choice
of color, or you want your sphere to be purple with different axes labels? Well then you are in luck as the Bloch
class has 22 attributes which one can control. Assuming b=Bloch():

Attribute Function Default Setting
b.axes Matplotlib axes instance for animations. Set by

axes keyword arg.
None

b.fig User supplied Matplotlib Figure instance. Set by
fig keyword arg.

None

b.font_color Color of fonts ‘black’
b.font_size Size of fonts 20
b.frame_alpha Transparency of wireframe 0.1
b.frame_color Color of wireframe ‘gray’
b.frame_width Width of wireframe 1
b.point_color List of colors for Bloch point markers to cycle

through
[’b’,’r’,’g’,’#CC6600’]

b.point_marker List of point marker shapes to cycle through [’o’,’s’,’d’,’^’]
b.point_size List of point marker sizes (not all markers look the

same size when plotted)
[55,62,65,75]

b.sphere_alpha Transparency of Bloch sphere 0.2
b.sphere_color Color of Bloch sphere ‘#FFDDDD’
b.size Sets size of figure window [7,7] (700x700 pixels)
b.vector_color List of colors for Bloch vectors to cycle through [’g’,’#CC6600’,’b’,’r’]
b.vector_width Width of Bloch vectors 4
b.view Azimuthal and Elevation viewing angles [-60,30]
b.xlabel Labels for x-axis [’x’,’‘] +x and -x (labels use LaTeX)
b.xlpos Position of x-axis labels [1.1,-1.1]
b.ylabel Labels for y-axis [’y’,’‘] +y and -y (labels use LaTeX)
b.ylpos Position of y-axis labels [1.2,-1.2]
b.zlabel Labels for z-axis [’$left|0\right>$’,’$left|1\right>$’] +z and -z (la-

bels use LaTeX)
b.zlpos Position of z-axis labels [1.2,-1.2]

Bloch3d Class Options

The Bloch3d sphere is also customizable. Note however that the attributes for the Bloch3d class are not in one-
to-one correspondence to those of the Bloch class due to the different underlying rendering engines. Assuming
b=Bloch3d():

94

Attribute Function Default Setting
b.fig User supplied Mayavi Figure instance. Set by

fig keyword arg.
None

b.font_color Color of fonts ‘black’
b.font_scale Scale of fonts 0.08
b.frame Draw wireframe for sphere? True
b.frame_alpha Transparency of wireframe 0.05
b.frame_color Color of wireframe ‘gray’
b.frame_num Number of wireframe elements to draw 8
b.frame_radius Radius of wireframe lines 0.005
b.point_color List of colors for Bloch point markers to cycle

through
[’r’, ‘g’, ‘b’, ‘y’]

b.point_mode Type of point markers to draw sphere
b.point_size Size of points 0.075
b.sphere_alpha Transparency of Bloch sphere 0.1
b.sphere_color Color of Bloch sphere ‘#808080’
b.size Sets size of figure window [500,500] (500x500 pixels)
b.vector_color List of colors for Bloch vectors to cycle through [’r’, ‘g’, ‘b’, ‘y’]
b.vector_width Width of Bloch vectors 3
b.view Azimuthal and Elevation viewing angles [45,65]
b.xlabel Labels for x-axis [’|x>’, ‘’] +x and -x
b.xlpos Position of x-axis labels [1.07,-1.07]
b.ylabel Labels for y-axis [’y’,’‘] +y and -y
b.ylpos Position of y-axis labels [1.07,-1.07]
b.zlabel Labels for z-axis [’|0>’, ‘|1>’] +z and -z
b.zlpos Position of z-axis labels [1.07,-1.07]

These properties can also be accessed via the print command:

In [50]: b = Bloch()

In [51]: print(b)
Bloch data:

Number of points: 0
Number of vectors: 0

Bloch sphere properties:

font_color: black
font_size: 20
frame_alpha: 0.2
frame_color: gray
frame_width: 1
point_color: ['b', 'r', 'g', '#CC6600']
point_marker: ['o', 's', 'd', '^']
point_size: [25, 32, 35, 45]
sphere_alpha: 0.2
sphere_color: #FFDDDD
figsize: [5, 5]
vector_color: ['g', '#CC6600', 'b', 'r']
vector_width: 3
vector_style: -|>
vector_mutation: 20
view: [-60, 30]
xlabel: ['x', '']
xlpos: [1.2, -1.2]
ylabel: ['y', '']
ylpos: [1.2, -1.2]
zlabel: ['$\\left|0\\right>$', '$\\left|1\\right>$']
zlpos: [1.2, -1.2]

95

Animating with the Bloch sphere

The Bloch class was designed from the outset to generate animations. To animate a set of vectors or data points
the basic idea is: plot the data at time t1, save the sphere, clear the sphere, plot data at t2,... The Bloch sphere
will automatically number the output file based on how many times the object has been saved (this is stored in
b.savenum). The easiest way to animate data on the Bloch sphere is to use the save() method and generate
a series of images to convert into an animation. However, as of Matplotlib version 1.1, creating animations is
built-in. We will demonstrate both methods by looking at the decay of a qubit on the bloch sphere.

Example: Qubit Decay

The code for calculating the expectation values for the Pauli spin operators of a qubit decay is given below. This
code is common to both animation examples.

from qutip import *
from scipy import *
def qubit_integrate(w, theta, gamma1, gamma2, psi0, tlist):

operators and the hamiltonian
sx = sigmax(); sy = sigmay(); sz = sigmaz(); sm = sigmam()
H = w * (cos(theta) * sz + sin(theta) * sx)
collapse operators
c_op_list = []
n_th = 0.5 # temperature
rate = gamma1 * (n_th + 1)
if rate > 0.0: c_op_list.append(sqrt(rate) * sm)
rate = gamma1 * n_th
if rate > 0.0: c_op_list.append(sqrt(rate) * sm.dag())
rate = gamma2
if rate > 0.0: c_op_list.append(sqrt(rate) * sz)

evolve and calculate expectation values
output = mesolve(H, psi0, tlist, c_op_list, [sx, sy, sz])
return output.expect[0], output.expect[1], output.expect[2]

calculate the dynamics
w = 1.0 * 2 * pi # qubit angular frequency
theta = 0.2 * pi # qubit angle from sigma_z axis (toward sigma_x axis)
gamma1 = 0.5 # qubit relaxation rate
gamma2 = 0.2 # qubit dephasing rate
initial state
a = 1.0
psi0 = (a* basis(2,0) + (1-a)*basis(2,1))/(sqrt(a**2 + (1-a)**2))
tlist = linspace(0,4,250)
#expectation values for ploting
sx, sy, sz = qubit_integrate(w, theta, gamma1, gamma2, psi0, tlist)

Generating Images for Animation

An example of generating images for generating an animation outside of Python is given below:

b = Bloch()
b.vector_color = ['r']
b.view = [-40,30]
for i in range(len(sx)):

b.clear()
b.add_vectors([np.sin(theta),0,np.cos(theta)])
b.add_points([sx[:i+1],sy[:i+1],sz[:i+1]])
b.save(dirc='temp') #saving images to temp directory in current working directory

Generating an animation using ffmpeg (for example) is fairly simple:

96

ffmpeg -r 20 -b 1800 -i bloch_%01d.png bloch.mp4

Directly Generating an Animation

Important: Generating animations directly from Matplotlib requires installing either mencoder or ffmpeg. While
either choice works on linux, it is best to choose ffmpeg when running on the Mac. If using macports just do:
sudo port install ffmpeg.

The code to directly generate an mp4 movie of the Qubit decay is as follows:

from pylab import *
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D

fig = figure()
ax = Axes3D(fig,azim=-40,elev=30)
sphere = Bloch(axes=ax)

def animate(i):
sphere.clear()
sphere.add_vectors([np.sin(theta),0,np.cos(theta)])
sphere.add_points([sx[:i+1],sy[:i+1],sz[:i+1]])
sphere.make_sphere()
return ax

def init():
sphere.vector_color = ['r']
return ax

ani = animation.FuncAnimation(fig, animate, np.arange(len(sx)),
init_func=init, blit=True, repeat=False)

ani.save('bloch_sphere.mp4', fps=20, clear_temp=True)

The resulting movie may be viewed here: Bloch_Decay.mp4

3.10 Visualization of quantum states and processes

Visualization is often an important complement to a simulation of a quantum mechanical system. The first method
of visualization that come to mind might be to plot the expectation values of a few selected operators. But on top
of that, it can often be instructive to visualize for example the state vectors or density matices that describe the
state of the system, or how the state is transformed as a function of time (see process tomography below). In this
section we demonstrate how QuTiP and matplotlib can be used to perform a few types of visualizations that often
can provide additional understanding of quantum system.

Fock-basis probability distribution

In quantum mechanics probability distributions plays an important role, and as in statistics, the expectation values
computed from a probability distribution does not reveal the full story. For example, consider an quantum har-
monic oscillator mode with Hamiltonian 𝐻 = ℎ̄𝜔𝑎†𝑎, which is in a state described by its density matrix 𝜌, and
which on average is occupied by two photons, Tr[𝜌𝑎†𝑎] = 2. Given this information we cannot say whether the
oscillator is in a Fock state, a thermal state, a coherent state, etc. By visualizing the photon distribution in the Fock
state basis important clues about the underlying state can be obtained.

One convenient way to visualize a probability distribution is to use histograms. Consider the following his-
togram visualization of the number-basis probability distribution, which can be obtained from the diagonal of the
density matrix, for a few possible oscillator states with on average occupation of two photons.

First we generate the density matrices for the coherent, thermal and fock states.

97

http://qutip.googlecode.com/svn/doc/figures/bloch_decay.mp4

In [1]: N = 20

In [2]: rho_coherent = coherent_dm(N, np.sqrt(2))

In [3]: rho_thermal = thermal_dm(N, 2)

In [4]: rho_fock = fock_dm(N, 2)

Next, we plot histograms of the diagonals of the density matrices:

In [5]: fig, axes = plt.subplots(1, 3, figsize=(12,3))

In [6]: bar0 = axes[0].bar(np.arange(0, N)-.5, rho_coherent.diag())

In [7]: lbl0 = axes[0].set_title("Coherent state")

In [8]: lim0 = axes[0].set_xlim([-.5, N])

In [9]: bar1 = axes[1].bar(np.arange(0, N)-.5, rho_thermal.diag())

In [10]: lbl1 = axes[1].set_title("Thermal state")

In [11]: lim1 = axes[1].set_xlim([-.5, N])

In [12]: bar2 = axes[2].bar(np.arange(0, N)-.5, rho_fock.diag())

In [13]: lbl2 = axes[2].set_title("Fock state")

In [14]: lim2 = axes[2].set_xlim([-.5, N])

In [15]: plt.show()

All these states correspond to an average of two photons, but by visualizing the photon distribution in Fock
basis the differences between these states are easily appreciated.

One frequently need to visualize the Fock-distribution in the way described above, so QuTiP provides a con-
venience function for doing this, see qutip.visualization.plot_fock_distribution, and the fol-
lowing example:

In [16]: fig, axes = plt.subplots(1, 3, figsize=(12,3))

In [17]: plot_fock_distribution(rho_coherent, fig=fig, ax=axes[0], title="Coherent state");

In [18]: plot_fock_distribution(rho_thermal, fig=fig, ax=axes[1], title="Thermal state");

In [19]: plot_fock_distribution(rho_fock, fig=fig, ax=axes[2], title="Fock state");

In [20]: fig.tight_layout()

In [21]: plt.show()

98

Quasi-probability distributions

The probability distribution in the number (Fock) basis only describes the occupation probabilities for a discrete
set of states. A more complete phase-space probability-distribution-like function for harmonic modes are the
Wigner and Husumi Q-functions, which are full descriptions of the quantum state (equivalent to the density ma-
trix). These are called quasi-distribution functions because unlike real probability distribution functions they can
for example be negative. In addition to being more complete descriptions of a state (compared to only the oc-
cupation probabilities plotted above), these distributions are also great for demonstrating if a quantum state is
quantum mechanical, since for example a negative Wigner function is a definite indicator that a state is distinctly
nonclassical.

Wigner function

In QuTiP, the Wigner function for a harmonic mode can be calculated with the function
qutip.wigner.wigner. It takes a ket or a density matrix as input, together with arrays that define
the ranges of the phase-space coordinates (in the x-y plane). In the following example the Wigner functions are
calculated and plotted for the same three states as in the previous section.

In [22]: xvec = np.linspace(-5,5,200)

In [23]: W_coherent = wigner(rho_coherent, xvec, xvec)

In [24]: W_thermal = wigner(rho_thermal, xvec, xvec)

In [25]: W_fock = wigner(rho_fock, xvec, xvec)

In [26]: # plot the results

In [27]: fig, axes = plt.subplots(1, 3, figsize=(12,3))

In [28]: cont0 = axes[0].contourf(xvec, xvec, W_coherent, 100)

In [29]: lbl0 = axes[0].set_title("Coherent state")

In [30]: cont1 = axes[1].contourf(xvec, xvec, W_thermal, 100)

In [31]: lbl1 = axes[1].set_title("Thermal state")

In [32]: cont0 = axes[2].contourf(xvec, xvec, W_fock, 100)

In [33]: lbl2 = axes[2].set_title("Fock state")

In [34]: plt.show()

99

Custom Color Maps

The main objective when plotting a Wigner function is to demonstrate that the underlying state is nonclassical,
as indicated by negative values in the Wigner function. Therefore, making these negative values stand out in
a figure is helpful for both analysis and publication purposes. Unfortunately, all of the color schemes used in
Matplotlib (or any other plotting software) are linear colormaps where small negative values tend to be near the
same color as the zero values, and are thus hidden. To fix this dilemma, QuTiP includes a nonlinear colormap
function qutip.visualization.wigner_cmap that colors all negative values differently than positive or
zero values. Below is a demonstration of how to use this function in your Wigner figures:

In [35]: import matplotlib as mpl

In [36]: from matplotlib import cm

In [37]: psi = (basis(10, 0) + basis(10, 3) + basis(10, 9)).unit()

In [38]: xvec = np.linspace(-5, 5, 500)

In [39]: W = wigner(psi, xvec, xvec)

In [40]: wmap = wigner_cmap(W) # Generate Wigner colormap

In [41]: nrm = mpl.colors.Normalize(-W.max(), W.max())

In [42]: fig, axes = plt.subplots(1, 2, figsize=(10, 4))

In [43]: plt1 = axes[0].contourf(xvec, xvec, W, 100, cmap=cm.RdBu, norm=nrm)

In [44]: axes[0].set_title("Standard Colormap");

In [45]: cb1 = fig.colorbar(plt1, ax=axes[0])

In [46]: plt2 = axes[1].contourf(xvec, xvec, W, 100, cmap=wmap) # Apply Wigner colormap

In [47]: axes[1].set_title("Wigner Colormap");

In [48]: cb2 = fig.colorbar(plt2, ax=axes[1])

In [49]: fig.tight_layout()

In [50]: plt.show()

100

Husimi Q-function

The Husimi Q function is, like the Wigner function, a quasiprobability distribution for harmonic modes. It is
defined as

𝑄(𝛼) =
1

𝜋
⟨𝛼|𝜌|𝛼⟩

where |𝛼⟩ is a coherent state and 𝛼 = 𝑥+ 𝑖𝑦. In QuTiP, the Husimi Q function can be computed given a state ket
or density matrix using the function qutip.wigner.qfunc, as demonstrated below.

In [51]: Q_coherent = qfunc(rho_coherent, xvec, xvec)

In [52]: Q_thermal = qfunc(rho_thermal, xvec, xvec)

In [53]: Q_fock = qfunc(rho_fock, xvec, xvec)

In [54]: fig, axes = plt.subplots(1, 3, figsize=(12,3))

In [55]: cont0 = axes[0].contourf(xvec, xvec, Q_coherent, 100)

In [56]: lbl0 = axes[0].set_title("Coherent state")

In [57]: cont1 = axes[1].contourf(xvec, xvec, Q_thermal, 100)

In [58]: lbl1 = axes[1].set_title("Thermal state")

In [59]: cont0 = axes[2].contourf(xvec, xvec, Q_fock, 100)

In [60]: lbl2 = axes[2].set_title("Fock state")

In [61]: plt.show()

101

Visualizing operators

Sometimes, it may also be useful to directly visualizing the underlying matrix representation of an operator. The
density matrix, for example, is an operator whose elements can give insights about the state it represents, but one
might also be interesting in plotting the matrix of an Hamiltonian to inspect the structure and relative importance
of various elements.

QuTiP offers a few functions for quickly visualizing matrix data in
the form of histograms, qutip.visualization.matrix_histogram and
qutip.visualization.matrix_histogram_complex, and as Hinton diagram of weighted squares,
qutip.visualization.hinton. These functions takes a qutip.Qobj.Qobj as first argument, and
optional arguments to, for example, set the axis labels and figure title (see the function’s documentation for
details).

For example, to illustrate the use of qutip.visualization.matrix_histogram, let’s visualize of
the Jaynes-Cummings Hamiltonian:

In [62]: N = 5

In [63]: a = tensor(destroy(N), qeye(2))

In [64]: b = tensor(qeye(N), destroy(2))

In [65]: sx = tensor(qeye(N), sigmax())

In [66]: H = a.dag() * a + sx - 0.5 * (a * b.dag() + a.dag() * b)

In [67]: # visualize H

In [68]: lbls_list = [[str(d) for d in range(N)], ["u", "d"]]

In [69]: xlabels = []

In [70]: for inds in tomography._index_permutations([len(lbls) for lbls in lbls_list]):
....: xlabels.append("".join([lbls_list[k][inds[k]]
....: for k in range(len(lbls_list))]))
....:

In [71]: fig, ax = matrix_histogram(H, xlabels, xlabels, limits=[-4,4])

In [72]: ax.view_init(azim=-55, elev=45)

In [73]: plt.show()

102

Similarly, we can use the function qutip.visualization.hinton, which is used below to visualize
the corresponding steadystate density matrix:

In [74]: rho_ss = steadystate(H, [np.sqrt(0.1) * a, np.sqrt(0.4) * b.dag()])

In [75]: fig, ax = hinton(rho_ss) # xlabels=xlabels, ylabels=xlabels)

In [76]: plt.show()

Quantum process tomography

Quantum process tomography (QPT) is a useful technique for characterizing experimental implementations of
quantum gates involving a small number of qubits. It can also be a useful theoretical tool that can give insight

103

in how a process transforms states, and it can be used for example to study how noise or other imperfections
deteriorate a gate. Whereas a fidelity or distance measure can give a single number that indicates how far from
ideal a gate is, a quantum process tomography analysis can give detailed information about exactly what kind of
errors various imperfections introduce.

The idea is to construct a transformation matrix for a quantum process (for example a quantum gate) that
describes how the density matrix of a system is transformed by the process. We can then decompose the trans-
formation in some operator basis that represent well-defined and easily interpreted transformations of the input
states.

To see how this works (see e.g. [Moh08] for more details), consider a process that is described by quantum
map 𝜖(𝜌in) = 𝜌out, which can be written

𝜖(𝜌in) = 𝜌out =

𝑁2∑︁
𝑖

𝐴𝑖𝜌in𝐴
†
𝑖 , (3.20)

where𝑁 is the number of states of the system (that is, 𝜌 is represented by an [𝑁×𝑁] matrix). Given an orthogonal
operator basis of our choice {𝐵𝑖}𝑁

2

𝑖 , which satisfies Tr[𝐵†
𝑖𝐵𝑗] = 𝑁𝛿𝑖𝑗 , we can write the map as

𝜖(𝜌in) = 𝜌out =
∑︁
𝑚𝑛

𝜒𝑚𝑛𝐵𝑚𝜌in𝐵
†
𝑛. (3.21)

where 𝜒𝑚𝑛 =
∑︀

𝑖𝑗 𝑏𝑖𝑚𝑏
*
𝑗𝑛 and 𝐴𝑖 =

∑︀
𝑚 𝑏𝑖𝑚𝐵𝑚. Here, matrix 𝜒 is the transformation matrix we are after, since

it describes how much 𝐵𝑚𝜌in𝐵
†
𝑛 contributes to 𝜌out.

In a numerical simulation of a quantum process we usually do not have access to the quantum map in the form
Eq. (3.20). Instead, what we usually can do is to calculate the propagator 𝑈 for the density matrix in superoperator
form, using for example the QuTiP function qutip.propagator.propagator. We can then write

𝜖(𝜌in) = 𝑈𝜌in = 𝜌out

where 𝜌 is the vector representation of the density matrix 𝜌. If we write Eq. (3.21) in superoperator form as well
we obtain

𝜌out =
∑︁
𝑚𝑛

𝜒𝑚𝑛�̃�𝑚�̃�
†
𝑛𝜌in = 𝑈𝜌in.

so we can identify

𝑈 =
∑︁
𝑚𝑛

𝜒𝑚𝑛�̃�𝑚�̃�
†
𝑛.

Now this is a linear equation systems for the 𝑁2 × 𝑁2 elements in 𝜒. We can solve it by writing 𝜒 and the
superoperator propagator as [𝑁4] vectors, and likewise write the superoperator product �̃�𝑚�̃�

†
𝑛 as a [𝑁4 × 𝑁4]

matrix 𝑀 :

𝑈𝐼 =

𝑁4∑︁
𝐽

𝑀𝐼𝐽𝜒𝐽

with the solution

𝜒 = 𝑀−1𝑈.

Note that to obtain 𝜒 with this method we have to construct a matrix 𝑀 with a size that is the square of the size of
the superoperator for the system. Obviously, this scales very badly with increasing system size, but this method
can still be a very useful for small systems (such as system comprised of a small number of coupled qubits).

Implementation in QuTiP

In QuTiP, the procedure described above is implemented in the function qutip.tomography.qpt, which
returns the 𝜒 matrix given a density matrix propagator. To illustrate how to use this function, let’s consider the
𝑖-SWAP gate for two qubits. In QuTiP the function qutip.gates.iswap generates the unitary transformation
for the state kets:

104

In [77]: U_psi = iswap()

To be able to use this unitary transformation matrix as input to the function qutip.tomography.qpt, we
first need to convert it to a transformation matrix for the corresponding density matrix:

In [78]: U_rho = spre(U_psi) * spost(U_psi.dag())

Next, we construct a list of operators that define the basis {𝐵𝑖} in the form of a list of operators for each
composite system. At the same time, we also construct a list of corresponding labels that will be used when
plotting the 𝜒 matrix.

In [79]: op_basis = [[qeye(2), sigmax(), sigmay(), sigmaz()]] * 2

In [80]: op_label = [["i", "x", "y", "z"]] * 2

We are now ready to compute 𝜒 using qutip.tomography.qpt, and to plot it using
qutip.tomography.qpt_plot_combined.

In [81]: chi = qpt(U_rho, op_basis)

In [82]: fig = qpt_plot_combined(chi, op_label, r'iSWAP')

In [83]: plt.show()

For a slightly more advanced example, where the density matrix propagator is calculated from
the dynamics of a system defined by its Hamiltonian and collapse operators using the function
qutip.propagator.propagator, see notebook “Time-dependent master equation: Landau-Zener tran-
sitions” on the tutorials section on the QuTiP web site.

3.11 Parallel computation

Parallel map and parallel for-loop

Often one is interested in the output of a given function as a single-parameter is varied. For instance, we can
calculate the steady-state response of our system as the driving frequency is varied. In cases such as this, where
each iteration is independent of the others, we can speedup the calculation by performing the iterations in parallel.

105

In QuTiP, parallel computations may be performed using the qutip.parallel.parallel_map function or
the qutip.parallel.parfor (parallel-for-loop) function.

To use the these functions we need to define a function of one or more variables, and the range over which one
of these variables are to be evaluated. For example:

In [1]: def func1(x): return x, x**2, x**3

In [2]: a, b, c = parfor(func1, range(10))

In [3]: print(a)
[0 1 2 3 4 5 6 7 8 9]

In [4]: print(b)
[0 1 4 9 16 25 36 49 64 81]

In [5]: print(c)
[0 1 8 27 64 125 216 343 512 729]

or

In [6]: result = parallel_map(func1, range(10))

In [7]: result_array = np.array(result)

In [8]: print(result_array[:, 0]) # == a
[0 1 2 3 4 5 6 7 8 9]

In [9]: print(result_array[:, 1]) # == b
[0 1 4 9 16 25 36 49 64 81]

In [10]: print(result_array[:, 2]) # == c
[0 1 8 27 64 125 216 343 512 729]

Note that the return values are arranged differently for the qutip.parallel.parallel_map
and the qutip.parallel.parfor functions, as illustrated below. In particular, the return value of
qutip.parallel.parallel_map is not enforced to be NumPy arrays, which can avoid unnecessary copy-
ing if all that is needed is to iterate over the resulting list:

In [11]: result = parfor(func1, range(5))

In [12]: print(result)
[array([0, 1, 2, 3, 4]), array([0, 1, 4, 9, 16]), array([0, 1, 8, 27, 64])]

In [13]: result = parallel_map(func1, range(5))

In [14]: print(result)
[(0, 0, 0), (1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]

The qutip.parallel.parallel_map and qutip.parallel.parfor functions are not limited to
just numbers, but also works for a variety of outputs:

In [15]: def func2(x): return x, Qobj(x), 'a' * x

In [16]: a, b, c = parfor(func2, range(5))

In [17]: print(a)
[0 1 2 3 4]

In [18]: print(b)
[Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True
Qobj data =
[[0.]]
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True

106

Qobj data =
[[1.]]
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True

Qobj data =
[[2.]]
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True

Qobj data =
[[3.]]
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True

Qobj data =
[[4.]]]

In [19]: print(c)
['' 'a' 'aa' 'aaa' 'aaaa']

Note: New in QuTiP 3.

One can also define functions with multiple input arguments and even keyword arguments.
Here the qutip.parallel.parallel_map and qutip.parallel.parfor functions behaves dif-
ferently: While qutip.parallel.parallel_map only iterate over the values arguments, the
qutip.parallel.parfor function simultaneously iterates over all arguments:

In [20]: def sum_diff(x, y, z=0): return x + y, x - y, z

In [21]: parfor(sum_diff, [1, 2, 3], [4, 5, 6], z=5.0)
Out[21]: [array([5, 7, 9]), array([-3, -3, -3]), array([5., 5., 5.])]

In [22]: parallel_map(sum_diff, [1, 2, 3], task_args=(np.array([4, 5, 6]),), task_kwargs=dict(z=5.0))
Out[22]:
[(array([5, 6, 7]), array([-3, -4, -5]), 5.0),
(array([6, 7, 8]), array([-2, -3, -4]), 5.0),
(array([7, 8, 9]), array([-1, -2, -3]), 5.0)]

Note that the keyword arguments can be anything you like, but the keyword values are not iterated over.
The keyword argument num_cpus is reserved as it sets the number of CPU’s used by parfor. By default,
this value is set to the total number of physical processors on your system. You can change this number
to a lower value, however setting it higher than the number of CPU’s will cause a drop in performance. In
qutip.parallel.parallel_map, keyword arguments to the task function are specified using task_kwargs
argument, so there is no special reserved keyword arguments.

The qutip.parallel.parallel_map function also supports progressbar, using the keyword argument
progress_bar which can be set to True or to an instance of qutip.ui.progressbar.BaseProgressBar.
There is a function called qutip.parallel.serial_map that works as a non-parallel drop-in replacement
for qutip.parallel.parallel_map, which allows easy switching between serial and parallel computa-
tion.

In [23]: import time

In [24]: def func(x): time.sleep(1)

In [25]: result = parallel_map(func, range(50), progress_bar=True)
10.0%. Run time: 2.01s. Est. time left: 00:00:00:18
20.0%. Run time: 3.01s. Est. time left: 00:00:00:12
30.0%. Run time: 4.02s. Est. time left: 00:00:00:09
40.0%. Run time: 5.02s. Est. time left: 00:00:00:07
50.0%. Run time: 7.02s. Est. time left: 00:00:00:07
60.0%. Run time: 8.02s. Est. time left: 00:00:00:05
70.0%. Run time: 9.02s. Est. time left: 00:00:00:03
80.0%. Run time: 10.02s. Est. time left: 00:00:00:02
90.0%. Run time: 12.02s. Est. time left: 00:00:00:01
100.0%. Run time: 13.02s. Est. time left: 00:00:00:00
Total run time: 13.07s

107

Parallel processing is useful for repeated tasks such as generating plots corresponding to the dynamical evolu-
tion of your system, or simultaneously simulating different parameter configurations.

IPython-based parallel_map

Note: New in QuTiP 3.

When QuTiP is used with IPython interpreter, there is an alternative parallel for-loop implementation in the
QuTiP module qutip.ipynbtools, see qutip.ipynbtools.parallel_map. The advantage of this
parallel_map implementation is based on IPythons powerful framework for parallelization, so the compute pro-
cesses are not confined to run on the same host as the main process.

3.12 Saving QuTiP Objects and Data Sets

With time-consuming calculations it is often necessary to store the results to files on disk, so it can be post-
processed and archived. In QuTiP there are two facilities for storing data: Quantum objects can be stored to files
and later read back as python pickles, and numerical data (vectors and matrices) can be exported as plain text files
in for example CSV (comma-separated values), TSV (tab-separated values), etc. The former method is preferred
when further calculations will be performed with the data, and the latter when the calculations are completed and
data is to be imported into a post-processing tool (e.g. for generating figures).

Storing and loading QuTiP objects

To store and load arbitrary QuTiP related objects (qutip.Qobj, qutip.solver.Result, etc.) there are two
functions: qutip.fileio.qsave and qutip.fileio.qload. The function qutip.fileio.qsave
takes an arbitrary object as first parameter and an optional filename as second parameter (default filename is
qutip_data.qu). The filename extension is always .qu. The function qutip.fileio.qload takes a mandatory
filename as first argument and loads and returns the objects in the file.

To illustrate how these functions can be used, consider a simple calculation of the steadystate of the harmonic
oscillator:

In [1]: a = destroy(10); H = a.dag() * a ; c_ops = [sqrt(0.5) * a, sqrt(0.25) * a.dag()]

In [2]: rho_ss = steadystate(H, c_ops)

The steadystate density matrix rho_ss is an instance of qutip.Qobj. It can be stored to a file steadystate.qu
using

In [3]: qsave(rho_ss, 'steadystate')

In [4]: ls *.qu
density_matrix_vs_time.qu steadystate.qu

and it can later be loaded again, and used in further calculations:

In [5]: rho_ss_loaded = qload('steadystate')
Loaded Qobj object:
Quantum object: dims = [[10], [10]], shape = [10, 10], type = oper, isHerm = True

In [6]: a = destroy(10)

In [7]: expect(a.dag() * a, rho_ss_loaded)
Out[7]: 0.9902248289345064

The nice thing about the qutip.fileio.qsave and qutip.fileio.qload functions is that almost
any object can be stored and load again later on. We can for example store a list of density matrices as returned
by qutip.mesolve:

108

In [8]: a = destroy(10); H = a.dag() * a ; c_ops = [sqrt(0.5) * a, sqrt(0.25) * a.dag()]

In [9]: psi0 = rand_ket(10)

In [10]: times = np.linspace(0, 10, 10)

In [11]: dm_list = mesolve(H, psi0, times, c_ops, [])

In [12]: qsave(dm_list, 'density_matrix_vs_time')

And it can then be loaded and used again, for example in an other program:

In [13]: dm_list_loaded = qload('density_matrix_vs_time')
Loaded Result object:
Result object with mesolve data.

states = True
num_collapse = 0

In [14]: a = destroy(10)

In [15]: expect(a.dag() * a, dm_list_loaded.states)
Out[15]:
array([5.47236604, 4.25321934, 3.40221147, 2.78459863, 2.32939541,

1.99152365, 1.739766 , 1.55173281, 1.41108289, 1.30577149])

Storing and loading datasets

The qutip.fileio.qsave and qutip.fileio.qload are great, but the file format used is only
understood by QuTiP (python) programs. When data must be exported to other programs the preferred
method is to store the data in the commonly used plain-text file formats. With the QuTiP functions
qutip.fileio.file_data_store and qutip.fileio.file_data_read we can store and load
numpy arrays and matrices to files on disk using a deliminator-separated value format (for example comma-
separated values CSV). Almost any program can handle this file format.

The qutip.fileio.file_data_store takes two mandatory and three optional arguments:

>>> file_data_store(filename, data, numtype="complex", numformat="decimal", sep=",")

where filename is the name of the file, data is the data to be written to the file (must be a numpy array), numtype
(optional) is a flag indicating numerical type that can take values complex or real, numformat (optional) specifies
the numerical format that can take the values exp for the format 1.0e1 and decimal for the format 10.0, and sep
(optional) is an arbitrary single-character field separator (usually a tab, space, comma, semicolon, etc.).

A common use for the qutip.fileio.file_data_store function is to store the expectation values of
a set of operators for a sequence of times, e.g., as returned by the qutip.mesolve function, which is what the
following example does:

In [16]: a = destroy(10); H = a.dag() * a ; c_ops = [sqrt(0.5) * a, sqrt(0.25) * a.dag()]

In [17]: psi0 = rand_ket(10)

In [18]: times = np.linspace(0, 100, 100)

In [19]: medata = mesolve(H, psi0, times, c_ops, [a.dag() * a, a + a.dag(), -1j * (a - a.dag())])

In [20]: shape(medata.expect)
Out[20]: (3, 100)

In [21]: shape(times)
Out[21]: (100,)

In [22]: output_data = np.vstack((times, medata.expect)) # join time and expt data

109

In [23]: file_data_store('expect.dat', output_data.T) # Note the .T for transpose!

In [24]: ls *.dat
expect.dat

In [25]: !head expect.dat
Generated by QuTiP: 100x4 complex matrix in decimal format [',' separated values].
0.0000000000+0.0000000000j,3.0955765962+0.0000000000j,2.3114466232+0.0000000000j,-0.2208505556+0.0000000000j
1.0101010101+0.0000000000j,2.5836572767+0.0000000000j,0.8657267558+0.0000000000j,-1.7468558726+0.0000000000j
2.0202020202+0.0000000000j,2.2083149044+0.0000000000j,-0.8847004889+0.0000000000j,-1.4419458039+0.0000000000j
3.0303030303+0.0000000000j,1.9242964668+0.0000000000j,-1.4729939509+0.0000000000j,-0.0149042695+0.0000000000j
4.0404040404+0.0000000000j,1.7075693373+0.0000000000j,-0.6940705865+0.0000000000j,1.0812526557+0.0000000000j
5.0505050505+0.0000000000j,1.5416230338+0.0000000000j,0.4773836586+0.0000000000j,1.0153635400+0.0000000000j
6.0606060606+0.0000000000j,1.4143168556+0.0000000000j,0.9734025713+0.0000000000j,0.1185429362+0.0000000000j
7.0707070707+0.0000000000j,1.3165352694+0.0000000000j,0.5404687852+0.0000000000j,-0.6657847865+0.0000000000j
8.0808080808+0.0000000000j,1.2413698337+0.0000000000j,-0.2418480793+0.0000000000j,-0.7102105490+0.0000000000j

In this case we didn’t really need to store both the real and imaginary parts, so instead we could use the
numtype=”real” option:

In [26]: file_data_store('expect.dat', output_data.T, numtype="real")

In [27]: !head -n5 expect.dat
Generated by QuTiP: 100x4 real matrix in decimal format [',' separated values].
0.0000000000,3.0955765962,2.3114466232,-0.2208505556
1.0101010101,2.5836572767,0.8657267558,-1.7468558726
2.0202020202,2.2083149044,-0.8847004889,-1.4419458039
3.0303030303,1.9242964668,-1.4729939509,-0.0149042695

and if we prefer scientific notation we can request that using the numformat=”exp” option

In [28]: file_data_store('expect.dat', output_data.T, numtype="real", numformat="exp")

In [29]: !head -n 5 expect.dat
Generated by QuTiP: 100x4 real matrix in exp format [',' separated values].
0.0000000000e+00,3.0955765962e+00,2.3114466232e+00,-2.2085055556e-01
1.0101010101e+00,2.5836572767e+00,8.6572675578e-01,-1.7468558726e+00
2.0202020202e+00,2.2083149044e+00,-8.8470048890e-01,-1.4419458039e+00
3.0303030303e+00,1.9242964668e+00,-1.4729939509e+00,-1.4904269545e-02

Loading data previously stored using qutip.fileio.file_data_store (or some other software) is a
even easier. Regardless of which deliminator was used, if data was stored as complex or real numbers, if it is
in decimal or exponential form, the data can be loaded using the qutip.fileio.file_data_read, which
only takes the filename as mandatory argument.

In [30]: input_data = file_data_read('expect.dat')

In [31]: shape(input_data)
Out[31]: (100, 4)

In [32]: from pylab import *

In [33]: plot(input_data[:,0], input_data[:,1]); # plot the data
Out[33]: [<matplotlib.lines.Line2D at 0x10d8f65d0>]

110

(If a particularly obscure choice of deliminator was used it might be necessary to use the optional second
argument, for example sep=”_” if _ is the deliminator).

3.13 Generating Random Quantum States & Operators

QuTiP includes a collection of random state generators for simulations, theorem evaluation, and code testing:
Function Description
rand_ket Random ket-vector
rand_dm Random density ma-

trix
rand_herm Random Hermitian

matrix
rand_unitary Random Unitary ma-

trix
See the API documentation: Random Operators and States for details.
In all cases, these functions can be called with a single parameter 𝑁 that indicates a 𝑁𝑥𝑁 matrix (rand_dm,

rand_herm, rand_unitary), or a 𝑁𝑥1 vector (rand_ket), should be generated. For example:

In [1]: rand_ket(5)
Out[1]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[-0.37899439-0.03246954j]
[-0.09389192-0.30281261j]
[-0.41147565-0.20947105j]
[-0.41769426-0.02916778j]
[-0.54640563+0.26024817j]]

or

In [2]: rand_herm(5)
Out[2]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[-0.29514824+0.j 0.00000000+0.j -0.27781445-0.15337652j

-0.35652395-0.05592461j 0.00000000+0.j]
[0.00000000+0.j -0.55204452+0.j -0.22293747-0.12925792j
-0.09264731+0.20738712j -0.71881796+0.01202871j]

[-0.27781445+0.15337652j -0.22293747+0.12925792j 0.00000000+0.j
-0.84636559+0.30414702j -0.47088943-0.09313568j]

[-0.35652395+0.05592461j -0.09264731-0.20738712j -0.84636559-0.30414702j

111

-0.02792858+0.j -0.39742673-0.09375464j]
[0.00000000+0.j -0.71881796-0.01202871j -0.47088943+0.09313568j
-0.39742673+0.09375464j 0.00000000+0.j]]

In this previous example, we see that the generated Hermitian operator contains a fraction of elements that are
identically equal to zero. The number of nonzero elements is called the density and can be controlled by calling
any of the random state/operator generators with a second argument between 0 and 1. By default, the density for
the operators is 0.75 where as ket vectors are completely dense (1). For example:

In [3]: rand_dm(5, 0.5)
Out[3]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[0.04892987+0.j 0.00000000+0.j 0.00265679-0.0245355j

0.09885662-0.01638816j 0.00000000+0.j]
[0.00000000+0.j 0.00000000+0.j 0.00000000+0.j
0.00000000+0.j 0.00000000+0.j]

[0.00265679+0.0245355j 0.00000000+0.j 0.24585391+0.j
0.01358542+0.04868103j 0.21507082+0.04053822j]

[0.09885662+0.01638816j 0.00000000+0.j 0.01358542-0.04868103j
0.43862274+0.j 0.01799108+0.05080967j]

[0.00000000+0.j 0.00000000+0.j 0.21507082-0.04053822j
0.01799108-0.05080967j 0.26659348+0.j]]

has roughly half nonzero elements, or equivalently a density of 0.5.

Warning: In the case of a density matrix, setting the density too low will result in not enough diagonal
elements to satisfy 𝑇𝑟(𝜌) = 1.

Composite random objects

In many cases, one is interested in generating random quantum objects that correspond to composite systems
generated using the qutip.tensor.tensor function. Specifying the tensor structure of a quantum object is
done using the dims keyword argument in the same fashion as one would do for a qutip.Qobj object:

In [4]: rand_dm(4, 0.5, dims=[[2,2], [2,2]])
Out[4]:
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[0.30122934 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0.34938533 0.]
[0. 0. 0. 0.34938533]]

3.14 Modifying Internal QuTiP Settings

User Accessible Parameters

In this section we show how to modify a few of the internal parameters used by QuTiP. The settings that can be
modified are given in the following table:

Setting Description Options
auto_herm Automatically calculate the hermic-

ity of quantum objects.
True / False

auto_tidyup Automatically tidyup quantum ob-
jects.

True / False

auto_tidyup_atol Tolerance used by tidyup any float value > 0
atol General tolerance any float value > 0
num_cpus Number of CPU’s used for multi-

processing.
int between 1 and # cpu’s

debug Show debug printouts. True / False

112

Example: Changing Settings

The two most important settings are auto_tidyup and auto_tidyup_atol as they control whether the
small elements of a quantum object should be removed, and what number should be considered as the cut-off
tolerance. Modifying these, or any other parameters, is quite simple:

>>> qutip.settings.auto_tidyup = False

These settings will be used for the current QuTiP session only and will need to be modified again when
restarting QuTiP. If running QuTiP from a script file, then place the qutip.setings.xxxx commands immediately
after from qutip import * at the top of the script file. If you want to reset the parameters back to their default values
then call the reset command:

>>> qutip.settings.reset()

Persistent Settings

When QuTiP is imported, it looks for the file .qutiprc in the user’s home directory. If this file is found, it will
be loaded and overwrite the QuTiP default settings, which allows for persistent changes in the QuTiP settings to
be made. A sample .qutiprc file is show below. The syntax is a simple key-value format, where the keys and
possible values are described in the table above:

QuTiP Graphics
qutip_graphics="YES"
use auto tidyup
auto_tidyup=True
detect hermiticity
auto_herm=True
use auto tidyup absolute tolerance
auto_tidyup_atol=1e-12
number of cpus
num_cpus=4
debug
debug=False

113

CHAPTER
FOUR

API DOCUMENTATION

This chapter contains automatically generated API documentation, including a complete list of QuTiP’s public
classes and functions.

4.1 Classes

Qobj

class Qobj(inpt=None, dims=[[], []], shape=[], type=None, isherm=None, fast=False, superrep=None)
A class for representing quantum objects, such as quantum operators and states.

The Qobj class is the QuTiP representation of quantum operators and state vectors. This class also im-
plements math operations +,-,* between Qobj instances (and / by a C-number), as well as a collection of
common operator/state operations. The Qobj constructor optionally takes a dimension list and/or shape
list as arguments.

Parameters inpt : array_like
Data for vector/matrix representation of the quantum object.

dims : list
Dimensions of object used for tensor products.

shape : list
Shape of underlying data structure (matrix shape).

fast : bool
Flag for fast qobj creation when running ode solvers. This parameter is used inter-
nally only.

Attributes

data (array_like) Sparse matrix characterizing the quantum object.
dims (list) List of dimensions keeping track of the tensor structure.
shape (list) Shape of the underlying data array.
type (str) Type of quantum object: ‘bra’, ‘ket’, ‘oper’, ‘operator-ket’, ‘operator-bra’, or ‘super’.
super-
rep

(str) Representation used if type is ‘super’. One of ‘super’ (Liouville form) or ‘choi’ (Choi
matrix with tr = dimension).

isherm (bool) Indicates if quantum object represents Hermitian operator.
iscp (bool) Indicates if the quantum object represents a map, and if that map is completely

positive (CP).
istp (bool) Indicates if the quantum object represents a map, and if that map is trace preserving

(TP).
iscptp (bool) Indicates if the quantum object represents a map that is completely positive and trace

preserving (CPTP).
isket (bool) Indicates if the quantum object represents a ket.
isbra (bool) Indicates if the quantum object represents a bra.
isoper (bool) Indicates if the quantum object represents an operator.
issuper (bool) Indicates if the quantum object represents a superoperator.
isoper-
ket

(bool) Indicates if the quantum object represents an operator in column vector form.

isoper-
bra

(bool) Indicates if the quantum object represents an operator in row vector form.

115

Methods

conj() Conjugate of quantum object.
dag() Adjoint (dagger) of quantum object.
eigenenergies(sparse=False, sort=’low’,
eigvals=0, tol=0, maxiter=100000)

Returns eigenenergies (eigenvalues) of a quantum
object.

eigenstates(sparse=False, sort=’low’, eigvals=0,
tol=0, maxiter=100000)

Returns eigenenergies and eigenstates of quantum
object.

expm() Matrix exponential of quantum object.
full() Returns dense array of quantum object data

attribute.
groundstate(sparse=False,tol=0,maxiter=100000) Returns eigenvalue and eigenket for the

groundstate of a quantum object.
matrix_element(bra, ket) Returns the matrix element of operator between

bra and ket vectors.
norm(norm=’tr’, sparse=False, tol=0,
maxiter=100000)

Returns norm of a ket or an operator.

permute(order) Returns composite qobj with indices reordered.
ptrace(sel) Returns quantum object for selected dimensions

after performing partial trace.
sqrtm() Matrix square root of quantum object.
tidyup(atol=1e-12) Removes small elements from quantum object.
tr() Trace of quantum object.
trans() Transpose of quantum object.
transform(inpt, inverse=False) Performs a basis transformation defined by inpt

matrix.
unit(norm=’tr’, sparse=False, tol=0,
maxiter=100000)

Returns normalized quantum object.

checkherm()
Check if the quantum object is hermitian.

Returns isherm: bool
Returns the new value of isherm property.

conj()
Conjugate operator of quantum object.

dag()
Adjoint operator of quantum object.

diag()
Diagonal elements of quantum object.

Returns diags: array
Returns array of real values if operators is Hermitian, otherwise complex values
are returned.

eigenenergies(sparse=False, sort=’low’, eigvals=0, tol=0, maxiter=100000)
Eigenenergies of a quantum object.
Eigenenergies (eigenvalues) are defined for operators or superoperators only.

Parameters sparse : bool
Use sparse Eigensolver

sort : str
Sort eigenvalues ‘low’ to high, or ‘high’ to low.

eigvals : int
Number of requested eigenvalues. Default is all eigenvalues.

tol : float
Tolerance used by sparse Eigensolver (0=machine precision). The sparse solver
may not converge if the tolerance is set too low.

maxiter : int

116

Maximum number of iterations performed by sparse solver (if used).
Returns eigvals: array

Array of eigenvalues for operator.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

eigenstates(sparse=False, sort=’low’, eigvals=0, tol=0, maxiter=100000)
Eigenstates and eigenenergies.
Eigenstates and eigenenergies are defined for operators and superoperators only.

Parameters sparse : bool
Use sparse Eigensolver

sort : str
Sort eigenvalues (and vectors) ‘low’ to high, or ‘high’ to low.

eigvals : int
Number of requested eigenvalues. Default is all eigenvalues.

tol : float
Tolerance used by sparse Eigensolver (0 = machine precision). The sparse solver
may not converge if the tolerance is set too low.

maxiter : int
Maximum number of iterations performed by sparse solver (if used).

Returns eigvals : array
Array of eigenvalues for operator.

eigvecs : array
Array of quantum operators representing the oprator eigenkets. Order of eigenkets
is determined by order of eigenvalues.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

eliminate_states(states_inds, normalize=False)
Creates a new quantum object with states in state_inds eliminated.

Parameters states_inds : list of integer
The states that should be removed.

normalize : True / False
Weather or not the new Qobj instance should be normalized (default is False). For
Qobjs that represents density matrices or state vectors normalized should probably
be set to True, but for Qobjs that represents operators in for example an Hamilto-
nian, normalize should be False.

Returns q : qutip.Qobj
A new instance of qutip.Qobj that contains only the states corresponding to
indices that are not in state_inds.

Note: Experimental.

static evaluate(qobj_list, t, args)
Evaluate a time-dependent quantum object in list format. For example,

qobj_list = [H0, [H1, func_t]]

is evaluated to

Qobj(t) = H0 + H1 * func_t(t, args)

117

and

qobj_list = [H0, [H1, ‘sin(w * t)’]]

is evaluated to

Qobj(t) = H0 + H1 * sin(args[’w’] * t)

Parameters qobj_list : list
A nested list of Qobj instances and corresponding time-dependent coefficients.

t : float
The time for which to evaluate the time-dependent Qobj instance.

args : dictionary
A dictionary with parameter values required to evaluate the time-dependent Qobj
intance.

Returns output : Qobj
A Qobj instance that represents the value of qobj_list at time t.

expm(method=None)
Matrix exponential of quantum operator.
Input operator must be square.

Parameters method : str {‘dense’, ‘sparse’, ‘scipy-dense’, ‘scipy-sparse’}
Use set method to use to calculate the matrix exponentiation. The available choices
includes ‘dense’ and ‘sparse’ for using QuTiP’s implementation of expm using
dense and sparse matrices, respectively, and ‘scipy-dense’ and ‘scipy-sparse’ for
using the scipy.linalg.expm (dense) and scipy.sparse.linalg.expm (sparse). If no
method is explicitly given a heuristic will be used to try and automatically select
the most appropriate solver.

Returns oper : qobj
Exponentiated quantum operator.

Raises TypeError
Quantum operator is not square.

extract_states(states_inds, normalize=False)
Qobj with states in state_inds only.

Parameters states_inds : list of integer
The states that should be kept.

normalize : True / False
Weather or not the new Qobj instance should be normalized (default is False). For
Qobjs that represents density matrices or state vectors normalized should probably
be set to True, but for Qobjs that represents operators in for example an Hamilto-
nian, normalize should be False.

Returns q : qutip.Qobj
A new instance of qutip.Qobj that contains only the states corresponding to the
indices in state_inds.

Note: Experimental.

full(squeeze=False)
Dense array from quantum object.

Returns data : array
Array of complex data from quantum objects data attribute.

groundstate(sparse=False, tol=0, maxiter=100000)
Ground state Eigenvalue and Eigenvector.
Defined for quantum operators or superoperators only.

Parameters sparse : bool
Use sparse Eigensolver

118

tol : float
Tolerance used by sparse Eigensolver (0 = machine precision). The sparse solver
may not converge if the tolerance is set too low.

maxiter : int
Maximum number of iterations performed by sparse solver (if used).

Returns eigval : float
Eigenvalue for the ground state of quantum operator.

eigvec : qobj
Eigenket for the ground state of quantum operator.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

matrix_element(bra, ket)
Calculates a matrix element.
Gives the matrix element for the quantum object sandwiched between a bra and ket vector.

Parameters bra : qobj
Quantum object of type ‘bra’.

ket : qobj
Quantum object of type ‘ket’.

Returns elem : complex
Complex valued matrix element.

Raises TypeError
Can only calculate matrix elements between a bra and ket quantum object.

norm(norm=None, sparse=False, tol=0, maxiter=100000)
Norm of a quantum object.
Default norm is L2-norm for kets and trace-norm for operators. Other ket and operator norms may be
specified using the norm and argument.

Parameters norm : str
Which norm to use for ket/bra vectors: L2 ‘l2’, max norm ‘max’, or for operators:
trace ‘tr’, Frobius ‘fro’, one ‘one’, or max ‘max’.

sparse : bool
Use sparse eigenvalue solver for trace norm. Other norms are not affected by this
parameter.

tol : float
Tolerance for sparse solver (if used) for trace norm. The sparse solver may not
converge if the tolerance is set too low.

maxiter : int
Maximum number of iterations performed by sparse solver (if used) for trace norm.

Returns norm : float
The requested norm of the operator or state quantum object.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

overlap(state)
Overlap between two state vectors.
Gives the overlap (scalar product) for the quantum object and state state vector.

Parameters state : qobj
Quantum object for a state vector of type ‘ket’ or ‘bra’.

119

Returns overlap : complex
Complex valued overlap.

Raises TypeError
Can only calculate overlap between a bra and ket quantum objects.

permute(order)
Permutes a composite quantum object.

Parameters order : list/array
List specifying new tensor order.

Returns P : qobj
Permuted quantum object.

ptrace(sel)
Partial trace of the quantum object.

Parameters sel : int/list
An int or list of components to keep after partial trace.

Returns oper: qobj
Quantum object representing partial trace with selected components remaining.

Notes

This function is identical to the qutip.qobj.ptrace function that has been deprecated.

sqrtm(sparse=False, tol=0, maxiter=100000)
Sqrt of a quantum operator.
Operator must be square.

Parameters sparse : bool
Use sparse eigenvalue/vector solver.

tol : float
Tolerance used by sparse solver (0 = machine precision).

maxiter : int
Maximum number of iterations used by sparse solver.

Returns oper: qobj
Matrix square root of operator.

Raises TypeError
Quantum object is not square.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

tidyup(atol=None)
Removes small elements from the quantum object.

Parameters atol : float
Absolute tolerance used by tidyup. Default is set via qutip global settings parame-
ters.

Returns oper: qobj
Quantum object with small elements removed.

tr()
Trace of a quantum object.

Returns trace: float
Returns real if operator is Hermitian, returns complex otherwise.

trans()
Transposed operator.

120

Returns oper : qobj
Transpose of input operator.

transform(inpt, inverse=False)
Basis transform defined by input array.
Input array can be a matrix defining the transformation, or a list of kets that defines the new basis.

Parameters inpt : array_like
A matrix or list of kets defining the transformation.

inverse : bool
Whether to return inverse transformation.

Returns oper : qobj
Operator in new basis.

Notes

This function is still in development.

unit(norm=None, sparse=False, tol=0, maxiter=100000)
Operator or state normalized to unity.
Uses norm from Qobj.norm().

Parameters norm : str
Requested norm for states / operators.

sparse : bool
Use sparse eigensolver for trace norm. Does not affect other norms.

tol : float
Tolerance used by sparse eigensolver.

maxiter: int
Number of maximum iterations performed by sparse eigensolver.

Returns oper : qobj
Normalized quantum object.

eseries

class eseries(q=array([], dtype=object), s=array([], dtype=float64))
Class representation of an exponential-series expansion of time-dependent quantum objects.

Attributes

ampl (ndarray) Array of amplitudes for exponential series.
rates (ndarray) Array of rates for exponential series.
dims (list) Dimensions of exponential series components
shape (list) Shape corresponding to exponential series components

Methods

value(tlist) Evaluate an exponential series at the times listed in tlist
spec(wlist) Evaluate the spectrum of an exponential series at frequencies in wlist.
tidyup() Returns a tidier version of the exponential series

spec(wlist)
Evaluate the spectrum of an exponential series at frequencies in wlist.

Parameters wlist : array_like
Array/list of frequenies.

Returns val_list : ndarray
Values of exponential series at frequencies in wlist.

121

tidyup(*args)
Returns a tidier version of exponential series.

value(tlist)
Evaluates an exponential series at the times listed in tlist.

Parameters tlist : ndarray
Times at which to evaluate exponential series.

Returns val_list : ndarray
Values of exponential at times in tlist.

Bloch sphere

class Bloch(fig=None, axes=None, view=None, figsize=None, background=False)
Class for plotting data on the Bloch sphere. Valid data can be either points, vectors, or qobj objects.

Attributes

axes (instance {None}) User supplied Matplotlib axes for Bloch sphere animation.
fig (instance {None}) User supplied Matplotlib Figure instance for plotting Bloch sphere.
font_color (str {‘black’}) Color of font used for Bloch sphere labels.
font_size (int {20}) Size of font used for Bloch sphere labels.
frame_alpha (float {0.1}) Sets transparency of Bloch sphere frame.
frame_color (str {‘gray’}) Color of sphere wireframe.
frame_width (int {1}) Width of wireframe.
point_color (list {[”b”,”r”,”g”,”#CC6600”]}) List of colors for Bloch sphere point markers to cycle

through. i.e. By default, points 0 and 4 will both be blue (‘b’).
point_marker(list {[”o”,”s”,”d”,”^”]}) List of point marker shapes to cycle through.
point_size (list {[25,32,35,45]}) List of point marker sizes. Note, not all point markers look the same

size when plotted!
sphere_alpha(float {0.2}) Transparency of Bloch sphere itself.
sphere_color(str {‘#FFDDDD’}) Color of Bloch sphere.
figsize (list {[7,7]}) Figure size of Bloch sphere plot. Best to have both numbers the same;

otherwise you will have a Bloch sphere that looks like a football.
vec-
tor_color

(list {[”g”,”#CC6600”,”b”,”r”]}) List of vector colors to cycle through.

vec-
tor_width

(int {5}) Width of displayed vectors.

vec-
tor_style

(str {‘-|>’, ‘simple’, ‘fancy’, ‘’}) Vector arrowhead style (from matplotlib’s arrow style).

vec-
tor_mutation

(int {20}) Width of vectors arrowhead.

view (list {[-60,30]}) Azimuthal and Elevation viewing angles.
xlabel (list {[”x”,”“]}) List of strings corresponding to +x and -x axes labels, respectively.
xlpos (list {[1.1,-1.1]}) Positions of +x and -x labels respectively.
ylabel (list {[”y”,”“]}) List of strings corresponding to +y and -y axes labels, respectively.
ylpos (list {[1.2,-1.2]}) Positions of +y and -y labels respectively.
zlabel (list {[r’$left|0right>$’,r’$left|1right>$’]}) List of strings corresponding to +z and -z axes

labels, respectively.
zlpos (list {[1.2,-1.2]}) Positions of +z and -z labels respectively.

Methods

add_annotation
add_points
add_states

Continued on next page

122

Table 4.1 – continued from previous page
add_vectors
clear
make_sphere
plot_annotations
plot_axes
plot_axes_labels
plot_back
plot_front
plot_points
plot_vectors
render
save
set_label_convention
show

add_annotation(state_or_vector, text, **kwargs)
Add a text or LaTeX annotation to Bloch sphere, parametrized by a qubit state or a vector.

Parameters state_or_vector : Qobj/array/list/tuple
Position for the annotaion. Qobj of a qubit or a vector of 3 elements.

text : str/unicode
Annotation text. You can use LaTeX, but remember to use raw string e.g. r”$langle
x rangle$” or escape backslashes e.g. “$\langle x \rangle$”.

**kwargs :
Options as for mplot3d.axes3d.text, including: fontsize, color, horizontalalignment,
verticalalignment.

add_points(points, meth=’s’)
Add a list of data points to bloch sphere.

Parameters points : array/list
Collection of data points.

meth : str {‘s’, ‘m’, ‘l’}
Type of points to plot, use ‘m’ for multicolored, ‘l’ for points connected with a line.

add_states(state, kind=’vector’)
Add a state vector Qobj to Bloch sphere.

Parameters state : qobj
Input state vector.

kind : str {‘vector’,’point’}
Type of object to plot.

add_vectors(vectors)
Add a list of vectors to Bloch sphere.

Parameters vectors : array/list
Array with vectors of unit length or smaller.

clear()
Resets Bloch sphere data sets to empty.

make_sphere()
Plots Bloch sphere and data sets.

render(fig=None, axes=None)
Render the Bloch sphere and its data sets in on given figure and axes.

save(name=None, format=’png’, dirc=None)
Saves Bloch sphere to file of type format in directory dirc.

Parameters name : str

123

Name of saved image. Must include path and format as well. i.e.
‘/Users/Paul/Desktop/bloch.png’ This overrides the ‘format’ and ‘dirc’ arguments.

format : str
Format of output image.

dirc : str
Directory for output images. Defaults to current working directory.

Returns File containing plot of Bloch sphere.

set_label_convention(convention)
Set x, y and z labels according to one of conventions.

Parameters convention : string
One of the following: - “original” - “xyz” - “sx sy sz” - “01” - “polarization jones”
- “polarization jones letters”

see also: http://en.wikipedia.org/wiki/Jones_calculus
• “polarization stokes” see also: http://en.wikipedia.org/wiki/Stokes_parameters

show()
Display Bloch sphere and corresponding data sets.

vector_mutation = None
Sets the width of the vectors arrowhead

vector_style = None
Style of Bloch vectors, default = ‘-|>’ (or ‘simple’)

vector_width = None
Width of Bloch vectors, default = 5

class Bloch3d(fig=None)
Class for plotting data on a 3D Bloch sphere using mayavi. Valid data can be either points, vectors, or qobj
objects corresponding to state vectors or density matrices. for a two-state system (or subsystem).

Notes

The use of mayavi for 3D rendering of the Bloch sphere comes with a few limitations: I) You can not
embed a Bloch3d figure into a matplotlib window. II) The use of LaTex is not supported by the mayavi
rendering engine. Therefore all labels must be defined using standard text. Of course you can post-process
the generated figures later to add LaTeX using other software if needed.

124

http://en.wikipedia.org/wiki/Jones_calculus
http://en.wikipedia.org/wiki/Stokes_parameters

Attributes

fig (instance {None}) User supplied Matplotlib Figure instance for plotting Bloch sphere.
font_color (str {‘black’}) Color of font used for Bloch sphere labels.
font_scale (float {0.08}) Scale for font used for Bloch sphere labels.
frame (bool {True}) Draw frame for Bloch sphere
frame_alpha(float {0.05}) Sets transparency of Bloch sphere frame.
frame_color(str {‘gray’}) Color of sphere wireframe.
frame_num(int {8}) Number of frame elements to draw.
frame_radius(floats {0.005}) Width of wireframe.
point_color(list {[’r’, ‘g’, ‘b’, ‘y’]}) List of colors for Bloch sphere point markers to cycle through. i.e.

By default, points 0 and 4 will both be blue (‘r’).
point_mode(string {‘sphere’,’cone’,’cube’,’cylinder’,’point’}) Point marker shapes.
point_size (float {0.075}) Size of points on Bloch sphere.
sphere_alpha(float {0.1}) Transparency of Bloch sphere itself.
sphere_color(str {‘#808080’}) Color of Bloch sphere.
size (list {[500,500]}) Size of Bloch sphere plot in pixels. Best to have both numbers the same

otherwise you will have a Bloch sphere that looks like a football.
vec-
tor_color

(list {[’r’, ‘g’, ‘b’, ‘y’]}) List of vector colors to cycle through.

vec-
tor_width

(int {3}) Width of displayed vectors.

view (list {[45,65]}) Azimuthal and Elevation viewing angles.
xlabel (list {[’|x>’, ‘’]}) List of strings corresponding to +x and -x axes labels, respectively.
xlpos (list {[1.07,-1.07]}) Positions of +x and -x labels respectively.
ylabel (list {[’|y>’, ‘’]}) List of strings corresponding to +y and -y axes labels, respectively.
ylpos (list {[1.07,-1.07]}) Positions of +y and -y labels respectively.
zlabel (list {[’|0>’, ‘|1>’]}) List of strings corresponding to +z and -z axes labels, respectively.
zlpos (list {[1.07,-1.07]}) Positions of +z and -z labels respectively.

Methods

add_points
add_states
add_vectors
clear
make_sphere
plot_points
plot_vectors
save
show

add_points(points, meth=’s’)
Add a list of data points to bloch sphere.

Parameters points : array/list
Collection of data points.

meth : str {‘s’,’m’}
Type of points to plot, use ‘m’ for multicolored.

add_states(state, kind=’vector’)
Add a state vector Qobj to Bloch sphere.

Parameters state : qobj
Input state vector.

kind : str {‘vector’,’point’}
Type of object to plot.

125

add_vectors(vectors)
Add a list of vectors to Bloch sphere.

Parameters vectors : array/list
Array with vectors of unit length or smaller.

clear()
Resets the Bloch sphere data sets to empty.

make_sphere()
Plots Bloch sphere and data sets.

plot_points()
Plots points on the Bloch sphere.

plot_vectors()
Plots vectors on the Bloch sphere.

save(name=None, format=’png’, dirc=None)
Saves Bloch sphere to file of type format in directory dirc.

Parameters name : str
Name of saved image. Must include path and format as well. i.e.
‘/Users/Paul/Desktop/bloch.png’ This overrides the ‘format’ and ‘dirc’ arguments.

format : str
Format of output image. Default is ‘png’.

dirc : str
Directory for output images. Defaults to current working directory.

Returns File containing plot of Bloch sphere.

show()
Display the Bloch sphere and corresponding data sets.

Solver Options and Results

class Options(atol=1e-08, rtol=1e-06, method=’adams’, order=12, nsteps=1000, first_step=0,
max_step=0, min_step=0, average_expect=True, average_states=False, tidy=True,
num_cpus=0, norm_tol=0.001, norm_steps=5, rhs_reuse=False, rhs_filename=None,
ntraj=500, gui=False, rhs_with_state=False, store_final_state=False,
store_states=False, seeds=None, steady_state_average=False)

Class of options for evolution solvers such as qutip.mesolve and qutip.mcsolve. Options can be
specified either as arguments to the constructor:

opts = Options(order=10, ...)

or by changing the class attributes after creation:

opts = Options()
opts.order = 10

Returns options class to be used as options in evolution solvers.

126

Attributes

atol (float {1e-8}) Absolute tolerance.
rtol (float {1e-6}) Relative tolerance.
method (str {‘adams’,’bdf’}) Integration method.
order (int {12}) Order of integrator (<=12 ‘adams’, <=5 ‘bdf’)
nsteps (int {2500}) Max. number of internal steps/call.
first_step (float {0}) Size of initial step (0 = automatic).
min_step (float {0}) Minimum step size (0 = automatic).
max_step (float {0}) Maximum step size (0 = automatic)
tidy (bool {True,False}) Tidyup Hamiltonian and initial state by removing small terms.
num_cpus (int) Number of cpus used by mcsolver (default = # of cpus).
norm_tol (float) Tolerance used when finding wavefunction norm in mcsolve.
norm_steps (int) Max. number of steps used to find wavefunction norm to within norm_tol in mcsolve.
aver-
age_states

(bool {False}) Average states values over trajectories in stochastic solvers.

aver-
age_expect

(bool {True}) Average expectation values over trajectories for stochastic solvers.

mc_corr_eps(float {1e-10}) Arbitrarily small value for eliminating any divide-by-zero errors in
correlation calculations when using mcsolve.

ntraj (int {500}) Number of trajectories in stochastic solvers.
rhs_reuse (bool {False,True}) Reuse Hamiltonian data.
rhs_with_state(bool {False,True}) Whether or not to include the state in the Hamiltonian function

callback signature.
rhs_filename(str) Name for compiled Cython file.
seeds (ndarray) Array containing random number seeds for mcsolver.
store_final_state(bool {False, True}) Whether or not to store the final state of the evolution in the result

class.
store_states (bool {False, True}) Whether or not to store the state vectors or density matrices in the

result class, even if expectation values operators are given. If no expectation are provided,
then states are stored by default and this option has no effect.

class Result
Class for storing simulation results from any of the dynamics solvers.

Attributes

solver (str) Which solver was used [e.g., ‘mesolve’, ‘mcsolve’, ‘brmesolve’, ...]
times (list/array) Times at which simulation data was collected.
expect (list/array) Expectation values (if requested) for simulation.
states (array) State of the simulation (density matrix or ket) evaluated at times.
num_expect(int) Number of expectation value operators in simulation.
num_collapse(int) Number of collapse operators in simualation.
ntraj (int/list) Number of trajectories (for stochastic solvers). A list indicates that averaging of

expectation values was done over a subset of total number of trajectories.
col_times (list) Times at which state collpase occurred. Only for Monte Carlo solver.
col_which (list) Which collapse operator was responsible for each collapse in col_times. Only for

Monte Carlo solver.
class StochasticSolverOptions(H=None, state0=None, times=None, c_ops=[], sc_ops=[],

e_ops=[], m_ops=None, args=None, ntraj=1, nsub-
steps=1, d1=None, d2=None, d2_len=1, dW_factors=None,
rhs=None, generate_A_ops=None, generate_noise=None,
homogeneous=True, solver=None, method=None, distribu-
tion=’normal’, store_measurement=False, noise=None, normal-
ize=True, options=None, progress_bar=None, map_func=None,
map_kwargs=None)

Class of options for stochastic solvers such as qutip.stochastic.ssesolve,
qutip.stochastic.smesolve, etc. Options can be specified either as arguments to the con-
structor:

127

sso = StochasticSolverOptions(nsubsteps=100, ...)

or by changing the class attributes after creation:

sso = StochasticSolverOptions()
sso.nsubsteps = 1000

The stochastic solvers qutip.stochastic.ssesolve, qutip.stochastic.smesolve,
qutip.stochastic.ssepdpsolve and qutip.stochastic.smepdpsolve all take the same
keyword arguments as the constructor of these class, and internally they use these arguments to construct
an instance of this class, so it is rarely needed to explicitly create an instance of this class.

128

Attributes

H (qutip.Qobj) System Hamiltonian.
state0 (qutip.Qobj) Initial state vector (ket) or density matrix.
times (list / array) List of times for 𝑡. Must be uniformly spaced.
c_ops (list of qutip.Qobj) List of deterministic collapse operators.
sc_ops (list of qutip.Qobj) List of stochastic collapse operators. Each stochastic collapse

operator will give a deterministic and stochastic contribution to the equation of motion
according to how the d1 and d2 functions are defined.

e_ops (list of qutip.Qobj) Single operator or list of operators for which to evaluate
expectation values.

m_ops (list of qutip.Qobj) List of operators representing the measurement operators. The
expected format is a nested list with one measurement operator for each stochastic
increament, for each stochastic collapse operator.

args (dict / list) List of dictionary of additional problem-specific parameters.
ntraj (int) Number of trajectors.
nsubsteps (int) Number of sub steps between each time-spep given in times.
d1 (function) Function for calculating the operator-valued coefficient to the deterministic

increment dt.
d2 (function) Function for calculating the operator-valued coefficient to the stochastic

increment(s) dW_n, where n is in [0, d2_len[.
d2_len (int (default 1)) The number of stochastic increments in the process.
dW_factors (array) Array of length d2_len, containing scaling factors for each measurement

operator in m_ops.
rhs (function) Function for calculating the deterministic and stochastic contributions to the

right-hand side of the stochastic differential equation. This only needs to be specified
when implementing a custom SDE solver.

gener-
ate_A_ops

(function) Function that generates a list of pre-computed operators or super- operators.
These precomputed operators are used in some d1 and d2 functions.

gener-
ate_noise

(function) Function for generate an array of pre-computed noise signal.

homoge-
neous

(bool (True)) Wheter or not the stochastic process is homogenous. Inhomogenous
processes are only supported for poisson distributions.

solver (string) Name of the solver method to use for solving the stochastic equations. Valid
values are: ‘euler-maruyama’, ‘fast-euler-maruyama’, ‘milstein’, ‘fast-milstein’,
‘platen’.

method (string (‘homodyne’, ‘heterodyne’, ‘photocurrent’)) The name of the type of
measurement process that give rise to the stochastic equation to solve. Specifying a
method with this keyword argument is a short-hand notation for using pre-defined d1
and d2 functions for the corresponding stochastic processes.

distribution (string (‘normal’, ‘poission’)) The name of the distribution used for the stochastic
increments.

store_measurements(bool (default False)) Whether or not to store the measurement results in the
qutip.solver.SolverResult instance returned by the solver.

noise (array) Vector specifying the noise.
normalize (bool (default True)) Whether or not to normalize the wave function during the

evolution.
options (qutip.solver.Options) Generic solver options.
map_func:
function

A map function or managing the calls to single-trajactory solvers.

map_kwargs:
dictionary

Optional keyword arguments to the map_func function function.

progress_bar (qutip.ui.BaseProgressBar) Optional progress bar class instance.

Distribution functions

class Distribution(data=None, xvecs=[], xlabels=[])
A class for representation spatial distribution functions.

129

The Distribution class can be used to prepresent spatial distribution functions of arbitray dimension (al-
though only 1D and 2D distributions are used so far).

It is indented as a base class for specific distribution function, and provide implementation of basic functions
that are shared among all Distribution functions, such as visualization, calculating marginal distributions,
etc.

Parameters data : array_like
Data for the distribution. The dimensions must match the lengths of the coordinate
arrays in xvecs.

xvecs : list
List of arrays that spans the space for each coordinate.

xlabels : list
List of labels for each coordinate.

Methods

marginal
project
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

marginal(dim=0)
Calculate the marginal distribution function along the dimension dim. Return a new Distribution
instance describing this reduced- dimensionality distribution.

Parameters dim : int
The dimension (coordinate index) along which to obtain the marginal distribution.

Returns d : Distributions
A new instances of Distribution that describes the marginal distribution.

project(dim=0)
Calculate the projection (max value) distribution function along the dimension dim. Return a new
Distribution instance describing this reduced-dimensionality distribution.

Parameters dim : int
The dimension (coordinate index) along which to obtain the projected distribution.

Returns d : Distributions
A new instances of Distribution that describes the projection.

visualize(fig=None, ax=None, figsize=(8, 6), colorbar=True, cmap=None, style=’colormap’,
show_xlabel=True, show_ylabel=True)

Visualize the data of the distribution in 1D or 2D, depending on the dimensionality of the underlaying
distribution.
Parameters:

fig [matplotlib Figure instance] If given, use this figure instance for the visualization,
ax [matplotlib Axes instance] If given, render the visualization using this axis instance.
figsize [tuple] Size of the new Figure instance, if one needs to be created.
colorbar: Bool Whether or not the colorbar (in 2D visualization) should be used.
cmap: matplotlib colormap instance If given, use this colormap for 2D visualizations.
style [string] Type of visualization: ‘colormap’ (default) or ‘surface’.

Returns fig, ax : tuple
A tuple of matplotlib figure and axes instances.

class WignerDistribution(rho=None, extent=[[-5, 5], [-5, 5]], steps=250)

130

Methods

marginal
project
update
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

class QDistribution(rho=None, extent=[[-5, 5], [-5, 5]], steps=250)

Methods

marginal
project
update
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

class TwoModeQuadratureCorrelation(state=None, theta1=0.0, theta2=0.0, extent=[[-5, 5], [-5,
5]], steps=250)

Methods

marginal
project
update
update_psi
update_rho
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

update(state)
calculate probability distribution for quadrature measurement outcomes given a two-mode wavefunc-
tion or density matrix

update_psi(psi)
calculate probability distribution for quadrature measurement outcomes given a two-mode wavefunc-
tion

update_rho(rho)
calculate probability distribution for quadrature measurement outcomes given a two-mode density
matrix

class HarmonicOscillatorWaveFunction(psi=None, omega=1.0, extent=[-5, 5], steps=250)

Methods

131

marginal
project
update
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

update(psi)
Calculate the wavefunction for the given state of an harmonic oscillator

class HarmonicOscillatorProbabilityFunction(rho=None, omega=1.0, extent=[-5, 5],
steps=250)

Methods

marginal
project
update
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

update(rho)
Calculate the probability function for the given state of an harmonic oscillator (as density matrix)

Quantum information processing

class Gate(name, targets=None, controls=None, arg_value=None, arg_label=None)
Representation of a quantum gate, with its required parametrs, and target and control qubits.

class QubitCircuit(N, reverse_states=True)
Representation of a quantum program/algorithm, maintaining a sequence of gates.

Attributes

png
svg

Methods

add_1q_gate
add_circuit
add_gate
adjacent_gates
latex_code
propagators
qasm
remove_gate
resolve_gates
reverse_circuit

132

add_1q_gate(name, start=0, end=None, qubits=None, arg_value=None, arg_label=None)
Adds a single qubit gate with specified parameters on a variable number of qubits in the circuit. By
default, it applies the given gate to all the qubits in the register.

Parameters name: String
Gate name.

start: Integer
Starting location of qubits.

end: Integer
Last qubit for the gate.

qubits: List
Specific qubits for applying gates.

arg_value: Float
Argument value(phi).

arg_label: String
Label for gate representation.

add_circuit(qc, start=0)
Adds a block of a qubit circuit to the main circuit. Globalphase gates are not added.

Parameters qc: QubitCircuit
The circuit block to be added to the main circuit.

start: Integer
The qubit on which the first gate is applied.

add_gate(name, targets=None, controls=None, arg_value=None, arg_label=None)
Adds a gate with specified parameters to the circuit.

Parameters name: String
Gate name.

targets: List
Gate targets.

controls: List
Gate controls.

arg_value: Float
Argument value(phi).

arg_label: String
Label for gate representation.

adjacent_gates()
Method to resolve two qubit gates with non-adjacent control/s or target/s in terms of gates with adjacent
interactions.

Returns qc: QubitCircuit
Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

propagators()
Propagator matrix calculator for N qubits returning the individual steps as unitary matrices operating
from left to right.

Returns U_list: list
Returns list of unitary matrices for the qubit circuit.

remove_gate(index=None, name=None, remove=’first’)
Removes a gate with from a specific index or the first, last or all instances of a particular gate.

Parameters index: Integer
Location of gate to be removed.

name: String
Gate name to be removed.

remove: String

133

If first or all gate are to be removed.

resolve_gates(basis=[’CNOT’, ‘RX’, ‘RY’, ‘RZ’])
Unitary matrix calculator for N qubits returning the individual steps as unitary matrices operating from
left to right in the specified basis.

Parameters basis: list.
Basis of the resolved circuit.

Returns qc: QubitCircuit
Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

reverse_circuit()
Reverses an entire circuit of unitary gates.

Returns qc: QubitCircuit
Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

class CircuitProcessor(N, correct_global_phase)
Base class for representation of the physical implementation of a quantum program/algorithm on a specified
qubit system.

Methods

adjacent_gates
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
run_state

adjacent_gates(qc, setup)
Function to take a quantum circuit/algorithm and convert it into the optimal form/basis for the desired
physical system.

Parameters qc: QubitCircuit
Takes the quantum circuit to be implemented.

setup: String
Takes the nature of the spin chain; linear or circular.

Returns qc: QubitCircuit
The resolved circuit representation.

get_ops_and_u()
Returns the Hamiltonian operators and corresponding values by stacking them together.

get_ops_labels()
Returns the Hamiltonian operators and corresponding labels by stacking them together.

load_circuit(qc)
Translates an abstract quantum circuit to its corresponding Hamiltonian for a specific model.

Parameters qc: QubitCircuit
Takes the quantum circuit to be implemented.

optimize_circuit(qc)
Function to take a quantum circuit/algorithm and convert it into the optimal form/basis for the desired
physical system.

Parameters qc: QubitCircuit
Takes the quantum circuit to be implemented.

134

Returns qc: QubitCircuit
The optimal circuit representation.

plot_pulses()
Maps the physical interaction between the circuit components for the desired physical system.

Returns fig, ax: Figure
Maps the physical interaction between the circuit components.

pulse_matrix()
Generates the pulse matrix for the desired physical system.

Returns t, u, labels:
Returns the total time and label for every operation.

run(qc=None)
Generates the propagator matrix by running the Hamiltonian for the appropriate time duration for the
desired physical system.

Parameters qc: QubitCircuit
Takes the quantum circuit to be implemented.

Returns U_list: list
The propagator matrix obtained from the physical implementation.

run_state(qc=None, states=None)
Generates the propagator matrix by running the Hamiltonian for the appropriate time duration for the
desired physical system with the given initial state of the qubit register.

Parameters qc: QubitCircuit
Takes the quantum circuit to be implemented.

states: Qobj
Initial state of the qubits in the register.

Returns U_list: list
The propagator matrix obtained from the physical implementation.

class SpinChain(N, correct_global_phase=True, sx=None, sz=None, sxsy=None)
Representation of the physical implementation of a quantum program/algorithm on a spin chain qubit sys-
tem.

Methods

adjacent_gates
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
run_state

adjacent_gates(qc, setup=’linear’)
Method to resolve 2 qubit gates with non-adjacent control/s or target/s in terms of gates with adjacent
interactions for linear/circular spin chain system.

Parameters qc: QubitCircuit
The circular spin chain circuit to be resolved

setup: Boolean
Linear of Circular spin chain setup

Returns qc: QubitCircuit

135

Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

class LinearSpinChain(N, correct_global_phase=True, sx=None, sz=None, sxsy=None)
Representation of the physical implementation of a quantum program/algorithm on a spin chain qubit system
arranged in a linear formation. It is a sub-class of SpinChain.

Methods

adjacent_gates
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
run_state

class CircularSpinChain(N, correct_global_phase=True, sx=None, sz=None, sxsy=None)
Representation of the physical implementation of a quantum program/algorithm on a spin chain qubit system
arranged in a circular formation. It is a sub-class of SpinChain.

Methods

adjacent_gates
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
run_state

class DispersivecQED(N, correct_global_phase=True, Nres=None, deltamax=None, epsmax=None,
w0=None, wq=None, eps=None, delta=None, g=None)

Representation of the physical implementation of a quantum program/algorithm on a dispersive cavity-QED
system.

Methods

adjacent_gates
dispersive_gate_correction
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run

Continued on next page

136

Table 4.15 – continued from previous page
run_state

dispersive_gate_correction(qc1, rwa=True)
Method to resolve ISWAP and SQRTISWAP gates in a cQED system by adding single qubit gates to
get the correct output matrix.

Parameters qc: Qobj
The circular spin chain circuit to be resolved

rwa: Boolean
Specify if RWA is used or not.

Returns qc: QubitCircuit
Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

Optimal control

class GRAPEResult(u=None, H_t=None, U_f=None)
Class for representing the result of a GRAPE simulation.

Attributes

u (array) GRAPE control pulse matrix.
H_t (time-dependent Hamiltonian) The time-dependent Hamiltonian that realize the GRAPE pulse

sequence.
U_f (Qobj) The final unitary transformation that is realized by the evolution of the system with the

GRAPE generated pulse sequences.
class Dynamics(optimconfig)

This is a base class only. See subclass descriptions and choose an appropriate one for the application.

Note that initialize_controls must be called before any of the methods can be used.

137

138

Attributes

log_level (integer) level of messaging output from the logger. Options are attributes of
qutip.logging, in decreasing levels of messaging, are: DEBUG_INTENSE,
DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything
WARN or above is effectively ‘quiet’ execution, assuming everything runs as
expected. The default NOTSET implies that the level will be taken from the QuTiP
settings file, which by default is WARN Note value should be set using set_log_level

stats (Stats) Attributes of which give performance stats for the optimisation set to None to
reduce overhead of calculating stats. Note it is (usually) shared with the Optimizer
object

tslot_computer (TimeslotComputer (subclass instance)) Used to manage when the timeslot dynamics
generators, propagators, gradients etc are updated

prop_computer (PropagatorComputer (subclass instance)) Used to compute the propagators and their
gradients

fid_computer (FidelityComputer (subclass instance)) Used to computer the fidelity error and the
fidelity error gradient.

num_tslots (integer) Number of timeslots, aka timeslices
num_ctrls (integer) Number of controls. Note this is set when get_num_ctrls is called based on

the length of ctrl_dyn_gen
evo_time (float) Total time for the evolution
tau (array[num_tslots] of float) Duration of each timeslot Note that if this is set before

initialize_controls is called then num_tslots and evo_time are calculated from tau,
otherwise tau is generated from num_tslots and evo_time, that is equal size time slices

time (array[num_tslots+1] of float) Cumulative time for the evolution, that is the time at the
start of each time slice

drift_dyn_gen (Qobj) Drift or system dynamics generator Matrix defining the underlying dynamics
of the system

ctrl_dyn_gen (List of Qobj) Control dynamics generator: ctrl_dyn_gen () List of matrices defining
the control dynamics

initial (Qobj) Starting state / gate The matrix giving the initial state / gate, i.e. at time 0
Typically the identity

target (Qobj) Target state / gate: The matrix giving the desired state / gate for the evolution
ctrl_amps (array[num_tslots, num_ctrls] of float) Control amplitudes The amplitude (scale

factor) for each control in each timeslot
ini-
tial_ctrl_scaling

(float) Scale factor applied to be applied the control amplitudes when they are
initialised This is used by the PulseGens rather than in any fucntions in this class

self.initial_ctrl_offset
= 0.0

Linear offset applied to be applied the control amplitudes when they are initialised
This is used by the PulseGens rather than in any fucntions in this class

dyn_gen (List of Qobj) Dynamics generators the combined drift and control dynamics
generators for each timeslot

prop (list of Qobj) Propagators - used to calculate time evolution from one timeslot to the
next

prop_grad (array[num_tslots, num_ctrls] of Qobj) Propagator gradient (exact gradients only)
Array of matrices that give the gradient with respect to the control amplitudes in a
timeslot Note this attribute is only created when the selected PropagatorComputer is
an exact gradient type.

evo_init2t (List of Qobj) Forward evolution (or propagation) the time evolution operator from the
initial state / gate to the specified timeslot as generated by the dyn_gen

evo_t2end (List of Qobj) Onward evolution (or propagation) the time evolution operator from the
specified timeslot to end of the evolution time as generated by the dyn_gen

evo_t2targ (List of Qobj) ‘Backward’ List of Qobj propagation the overlap of the onward
propagation with the inverse of the target. Note this is only used (so far) by the unitary
dynamics fidelity

evo_current (Boolean) Used to flag that the dynamics used to calculate the evolution operators is
current. It is set to False when the amplitudes change

decomp_curr (List of boolean) Indicates whether the diagonalisation for the timeslot is fresh, it is set
to false when the dyn_gen for the timeslot is changed Only used when the
PropagatorComputer uses diagonalisation

dyn_gen_eigenvectors(List of array[drift_dyn_gen.shape]) Eigenvectors of the dynamics generators Used for
calculating the propagators and their gradients Only used when the
PropagatorComputer uses diagonalisation

prop_eigen (List of array[drift_dyn_gen.shape]) Propagator in diagonalised basis of the combined
dynamics generator Used for calculating the propagators and their gradients Only used
when the PropagatorComputer uses diagonalisation

dyn_gen_factormatrix(List of array[drift_dyn_gen.shape]) Matrix of scaling factors calculated duing the
decomposition Used for calculating the propagator gradients Only used when the
PropagatorComputer uses diagonalisation

fact_mat_round_prec(float) Rounding precision used when calculating the factor matrix to determine if two
eigenvalues are equivalent Only used when the PropagatorComputer uses
diagonalisation

def_amps_fname(string) Default name for the output used when save_amps is called

139

Methods

check_ctrls_initialized
clear
combine_dyn_gen
compute_evolution
ensure_decomp_curr
flag_system_changed
get_amp_times
get_ctrl_dyn_gen
get_drift_dim
get_dyn_gen
get_num_ctrls
get_owd_evo_target
init_time_slots
initialize_controls
reset
save_amps
set_log_level
spectral_decomp
update_ctrl_amps

combine_dyn_gen(k)
Computes the dynamics generator for a given timeslot The is the combined Hamiltion for unitary
systems

compute_evolution()
Recalculate the time evolution operators Dynamics generators (e.g. Hamiltonian) and prop (propaga-
tors) are calculated as necessary Actual work is completed by the recompute_evolution method of the
timeslot computer

ensure_decomp_curr(k)
Checks to see if the diagonalisation has been completed since the last update of the dynamics genera-
tors (after the amplitude update) If not then the diagonlisation is completed

flag_system_changed()
Flag eveolution, fidelity and gradients as needing recalculation

get_ctrl_dyn_gen(j)
Get the dynamics generator for the control Not implemented in the base class. Choose a subclass

get_drift_dim()
Returns the size of the matrix that defines the drift dynamics that is assuming the drift is NxN, then
this returns N

get_dyn_gen(k)
Get the combined dynamics generator for the timeslot Not implemented in the base class. Choose a
subclass

get_num_ctrls()
calculate the of controls from the length of the control list sets the num_ctrls property, which can be
used alternatively subsequently

get_owd_evo_target()
Get the inverse of the target. Used for calculating the ‘backward’ evolution

init_time_slots()
Generate the timeslot duration array ‘tau’ based on the evo_time and num_tslots attributes, unless the
tau attribute is already set in which case this step in ignored Generate the cumulative time array ‘time’
based on the tau values

initialize_controls(amps, init_tslots=True)
Set the initial control amplitudes and time slices Note this must be called after the configuration is
complete before any dynamics can be calculated

140

save_amps(file_name=None, times=None, amps=None, verbose=False)
Save a file with the current control amplitudes in each timeslot The first column in the file will be the
start time of the slot

Parameters file_name : string
Name of the file If None given the def_amps_fname attribuite will be used

times : List type (or string)
List / array of the start times for each slot If None given this will be retrieved through
get_amp_times() If ‘exclude’ then times will not be saved in the file, just the ampli-
tudes

amps : Array[num_tslots, num_ctrls]
Amplitudes to be saved If None given the ctrl_amps attribute will be used

verbose : Boolean
If True then an info message will be logged

set_log_level(lvl)
Set the log_level attribute and set the level of the logger that is call logger.setLevel(lvl)

spectral_decomp(k)
Calculate the diagonalization of the dynamics generator generating lists of eigenvectors, propagators
in the diagonalised basis, and the ‘factormatrix’ used in calculating the propagator gradient Not im-
plemented in this base class, because the method is specific to the matrix type

update_ctrl_amps(new_amps)
Determine if any amplitudes have changed. If so, then mark the timeslots as needing recalculation The
actual work is completed by the compare_amps method of the timeslot computer

class DynamicsUnitary(optimconfig)
This is the subclass to use for systems with dynamics described by unitary matrices. E.g. closed systems
with Hermitian Hamiltonians Note a matrix diagonalisation is used to compute the exponent The eigen
decomposition is also used to calculate the propagator gradient. The method is taken from DYNAMO (see
file header)

Attributes

drift_ham(Qobj) This is the drift Hamiltonian for unitary dynamics It is mapped to drift_dyn_gen during
initialize_controls

ctrl_ham(List of Qobj) These are the control Hamiltonians for unitary dynamics It is mapped to
ctrl_dyn_gen during initialize_controls

H (List of Qobj) The combined drift and control Hamiltonians for each timeslot These are the
dynamics generators for unitary dynamics. It is mapped to dyn_gen during initialize_controls

Methods

check_ctrls_initialized
clear
combine_dyn_gen
compute_evolution
ensure_decomp_curr
flag_system_changed
get_amp_times
get_ctrl_dyn_gen
get_drift_dim
get_dyn_gen
get_num_ctrls
get_owd_evo_target
init_time_slots
initialize_controls

Continued on next page

141

Table 4.17 – continued from previous page
reset
save_amps
set_log_level
spectral_decomp
update_ctrl_amps

get_ctrl_dyn_gen(j)
Get the dynamics generator for the control including the -i factor

get_dyn_gen(k)
Get the combined dynamics generator for the timeslot including the -i factor

spectral_decomp(k)
Calculates the diagonalization of the dynamics generator generating lists of eigenvectors, propagators
in the diagonalised basis, and the ‘factormatrix’ used in calculating the propagator gradient

class DynamicsSymplectic(optimconfig)
Symplectic systems This is the subclass to use for systems where the dynamics is described by symplectic
matrices, e.g. coupled oscillators, quantum optics

Attributes

omega (array[drift_dyn_gen.shape]) matrix used in the calculation of propagators (time evolution)
with symplectic systems.

Methods

check_ctrls_initialized
clear
combine_dyn_gen
compute_evolution
ensure_decomp_curr
flag_system_changed
get_amp_times
get_ctrl_dyn_gen
get_drift_dim
get_dyn_gen
get_num_ctrls
get_omega
get_owd_evo_target
init_time_slots
initialize_controls
reset
save_amps
set_log_level
spectral_decomp
update_ctrl_amps

get_ctrl_dyn_gen(j)
Get the dynamics generator for the control multiplied by omega

get_dyn_gen(k)
Get the combined dynamics generator for the timeslot multiplied by omega

class PulseGen(dyn=None)
Pulse generator Base class for all Pulse generators The object can optionally be instantiated with a Dynamics
object, in which case the timeslots and amplitude scaling and offset are copied from that. Otherwise the

142

class can be used independently by setting: tau (array of timeslot durations) or num_tslots and pulse_time
for equally spaced timeslots

Attributes

num_tslots(integer) Number of timeslots, aka timeslices (copied from Dynamics if given)
pulse_time(float) total duration of the pulse (copied from Dynamics.evo_time if given)
scal-
ing

(float) linear scaling applied to the pulse (copied from Dynamics.initial_ctrl_scaling if given)

offset (float) linear offset applied to the pulse (copied from Dynamics.initial_ctrl_offset if given)
tau (array[num_tslots] of float) Duration of each timeslot (copied from Dynamics if given)
lbound (float) Lower boundary for the pulse amplitudes Note that the scaling and offset attributes can

be used to fully bound the pulse for all generators except some of the random ones This bound
(if set) may result in additional shifting / scaling Default is -Inf

ubound (float) Upper boundary for the pulse amplitudes Note that the scaling and offset attributes can
be used to fully bound the pulse for all generators except some of the random ones This bound
(if set) may result in additional shifting / scaling Default is Inf

peri-
odic

(boolean) True if the pulse generator produces periodic pulses

ran-
dom

(boolean) True if the pulse generator produces random pulses

Methods

gen_pulse
init_pulse
reset

gen_pulse()
returns the pulse as an array of vales for each timeslot Must be implemented by subclass

init_pulse()
Initialise the pulse parameters

reset()
reset attributes to default values

class PulseGenRandom(dyn=None)
Generates random pulses as simply random values for each timeslot

Methods

gen_pulse
init_pulse
reset

gen_pulse()
Generate a pulse of random values between 1 and -1 Values are scaled using the scaling property and
shifted using the offset property Returns the pulse as an array of vales for each timeslot

class PulseGenZero(dyn=None)
Generates a flat pulse

Methods

143

gen_pulse
init_pulse
reset

gen_pulse()
Generate a pulse with the same value in every timeslot. The value will be zero, unless the offset is not
zero, in which case it will be the offset

class PulseGenLinear(dyn=None)
Generates linear pulses

Attributes

gradi-
ent

(float) Gradient of the line. Note this is calculated from the start_val and end_val if these are
given

start_val (float) Start point of the line. That is the starting amplitude
end_val (float) End point of the line. That is the amplitude at the start of the last timeslot

Methods

gen_pulse
init_pulse
reset

gen_pulse(gradient=None, start_val=None, end_val=None)
Generate a linear pulse using either the gradient and start value or using the end point to calulate the
gradient Note that the scaling and offset parameters are still applied, so unless these values are the
default 1.0 and 0.0, then the actual gradient etc will be different Returns the pulse as an array of vales
for each timeslot

init_pulse(gradient=None, start_val=None, end_val=None)
Calulate the gradient if pulse is defined by start and end point values

reset()
reset attributes to default values

class PulseGenLinear(dyn=None)
Generates linear pulses

Attributes

gradi-
ent

(float) Gradient of the line. Note this is calculated from the start_val and end_val if these are
given

start_val (float) Start point of the line. That is the starting amplitude
end_val (float) End point of the line. That is the amplitude at the start of the last timeslot

Methods

gen_pulse
init_pulse
reset

gen_pulse(gradient=None, start_val=None, end_val=None)
Generate a linear pulse using either the gradient and start value or using the end point to calulate the
gradient Note that the scaling and offset parameters are still applied, so unless these values are the

144

default 1.0 and 0.0, then the actual gradient etc will be different Returns the pulse as an array of vales
for each timeslot

init_pulse(gradient=None, start_val=None, end_val=None)
Calulate the gradient if pulse is defined by start and end point values

reset()
reset attributes to default values

class PulseGenPeriodic(dyn=None)
Intermediate class for all periodic pulse generators All of the periodic pulses range from -1 to 1 All have a
start phase that can be set between 0 and 2pi

Attributes

num_waves (float) Number of complete waves (cycles) that occur in the pulse. wavelen and freq
calculated from this if it is given

wavelen (float) Wavelength of the pulse (assuming the speed is 1) freq is calculated from this if it is
given

freq (float) Frequency of the pulse
start_phase (float) Phase of the pulse signal when t=0

Methods

gen_pulse
init_pulse
reset

init_pulse(num_waves=None, wavelen=None, freq=None, start_phase=None)
Calculate the wavelength, frequency, number of waves etc from the each other and the other parameters
If num_waves is given then the other parameters are worked from this Otherwise if the wavelength is
given then it is the driver Otherwise the frequency is used to calculate wavelength and num_waves

reset()
reset attributes to default values

class PulseGenSine(dyn=None)
Generates sine wave pulses

Methods

gen_pulse
init_pulse
reset

gen_pulse(num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a sine wave pulse If no params are provided then the class object attributes are used. If they
are provided, then these will reinitialise the object attribs. returns the pulse as an array of vales for
each timeslot

class PulseGenSquare(dyn=None)
Generates square wave pulses

Methods

gen_pulse
Continued on next page

145

Table 4.26 – continued from previous page
init_pulse
reset

gen_pulse(num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a square wave pulse If no parameters are pavided then the class object attributes are used. If
they are provided, then these will reinitialise the object attribs

class PulseGenSaw(dyn=None)
Generates saw tooth wave pulses

Methods

gen_pulse
init_pulse
reset

gen_pulse(num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a saw tooth wave pulse If no parameters are pavided then the class object attributes are used.
If they are provided, then these will reinitialise the object attribs

class PulseGenTriangle(dyn=None)
Generates triangular wave pulses

Methods

gen_pulse
init_pulse
reset

gen_pulse(num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a sine wave pulse If no parameters are pavided then the class object attributes are used. If
they are provided, then these will reinitialise the object attribs

4.2 Functions

Manipulation and Creation of States and Operators

Quantum States

basis(N, n=0, offset=0)
Generates the vector representation of a Fock state.

Parameters N : int
Number of Fock states in Hilbert space.

n : int
Integer corresponding to desired number state, defaults to 0 if omitted.

offset : int (default 0)
The lowest number state that is included in the finite number state representation of
the state.

Returns state : qobj
Qobj representing the requested number state |n>.

146

Notes

A subtle incompatibility with the quantum optics toolbox: In QuTiP:

basis(N, 0) = ground state

but in the qotoolbox:

basis(N, 1) = ground state

Examples

>>> basis(5,2)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.+0.j]
[0.+0.j]
[1.+0.j]
[0.+0.j]
[0.+0.j]]

coherent(N, alpha, offset=0, method=’operator’)
Generates a coherent state with eigenvalue alpha.

Constructed using displacement operator on vacuum state.

Parameters N : int
Number of Fock states in Hilbert space.

alpha : float/complex
Eigenvalue of coherent state.

offset : int (default 0)
The lowest number state that is included in the finite number state representation of
the state. Using a non-zero offset will make the default method ‘analytic’.

method : string {‘operator’, ‘analytic’}
Method for generating coherent state.

Returns state : qobj
Qobj quantum object for coherent state

Notes

Select method ‘operator’ (default) or ‘analytic’. With the ‘operator’ method, the coherent state is generated
by displacing the vacuum state using the displacement operator defined in the truncated Hilbert space of
size ‘N’. This method guarantees that the resulting state is normalized. With ‘analytic’ method the coherent
state is generated using the analytical formula for the coherent state coefficients in the Fock basis. This
method does not guarantee that the state is normalized if truncated to a small number of Fock states, but
would in that case give more accurate coefficients.

Examples

>>> coherent(5,0.25j)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[9.69233235e-01+0.j]
[0.00000000e+00+0.24230831j]
[-4.28344935e-02+0.j]
[0.00000000e+00-0.00618204j]
[7.80904967e-04+0.j]]

147

coherent_dm(N, alpha, offset=0, method=’operator’)
Density matrix representation of a coherent state.

Constructed via outer product of qutip.states.coherent

Parameters N : int
Number of Fock states in Hilbert space.

alpha : float/complex
Eigenvalue for coherent state.

offset : int (default 0)
The lowest number state that is included in the finite number state representation of
the state.

method : string {‘operator’, ‘analytic’}
Method for generating coherent density matrix.

Returns dm : qobj
Density matrix representation of coherent state.

Notes

Select method ‘operator’ (default) or ‘analytic’. With the ‘operator’ method, the coherent density matrix is
generated by displacing the vacuum state using the displacement operator defined in the truncated Hilbert
space of size ‘N’. This method guarantees that the resulting density matrix is normalized. With ‘analytic’
method the coherent density matrix is generated using the analytical formula for the coherent state coeffi-
cients in the Fock basis. This method does not guarantee that the state is normalized if truncated to a small
number of Fock states, but would in that case give more accurate coefficients.

Examples

>>> coherent_dm(3,0.25j)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[0.93941695+0.j 0.00000000-0.23480733j -0.04216943+0.j]
[0.00000000+0.23480733j 0.05869011+0.j 0.00000000-0.01054025j]
[-0.04216943+0.j 0.00000000+0.01054025j 0.00189294+0.j]]

fock(N, n=0, offset=0)
Bosonic Fock (number) state.

Same as qutip.states.basis.

Parameters N : int
Number of states in the Hilbert space.

n : int
int for desired number state, defaults to 0 if omitted.

Returns Requested number state |𝑛⟩.

Examples

>>> fock(4,3)
Quantum object: dims = [[4], [1]], shape = [4, 1], type = ket
Qobj data =
[[0.+0.j]
[0.+0.j]
[0.+0.j]
[1.+0.j]]

148

fock_dm(N, n=0, offset=0)
Density matrix representation of a Fock state

Constructed via outer product of qutip.states.fock.

Parameters N : int
Number of Fock states in Hilbert space.

n : int
int for desired number state, defaults to 0 if omitted.

Returns dm : qobj
Density matrix representation of Fock state.

Examples

>>> fock_dm(3,1)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j]]

ket2dm(Q)
Takes input ket or bra vector and returns density matrix formed by outer product.

Parameters Q : qobj
Ket or bra type quantum object.

Returns dm : qobj
Density matrix formed by outer product of Q.

Examples

>>> x=basis(3,2)
>>> ket2dm(x)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 1.+0.j]]

qutrit_basis()
Basis states for a three level system (qutrit)

Returns qstates : array
Array of qutrit basis vectors

thermal_dm(N, n, method=’operator’)
Density matrix for a thermal state of n particles

Parameters N : int
Number of basis states in Hilbert space.

n : float
Expectation value for number of particles in thermal state.

method : string {‘operator’, ‘analytic’}
string that sets the method used to generate the thermal state probabilities

Returns dm : qobj
Thermal state density matrix.

149

Notes

The ‘operator’ method (default) generates the thermal state using the truncated number operator num(N).
This is the method that should be used in computations. The ‘analytic’ method uses the analytic coeffi-
cients derived in an infinite Hilbert space. The analytic form is not necessarily normalized, if truncated too
aggressively.

Examples

>>> thermal_dm(5, 1)
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isHerm = True
Qobj data =
[[0.51612903 0. 0. 0. 0.]
[0. 0.25806452 0. 0. 0.]
[0. 0. 0.12903226 0. 0.]
[0. 0. 0. 0.06451613 0.]
[0. 0. 0. 0. 0.03225806]]

>>> thermal_dm(5, 1, 'analytic')
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isHerm = True
Qobj data =
[[0.5 0. 0. 0. 0.]
[0. 0.25 0. 0. 0.]
[0. 0. 0.125 0. 0.]
[0. 0. 0. 0.0625 0.]
[0. 0. 0. 0. 0.03125]]

phase_basis(N, m, phi0=0)
Basis vector for the mth phase of the Pegg-Barnett phase operator.

Parameters N : int
Number of basis vectors in Hilbert space.

m : int
Integer corresponding to the mth discrete phase phi_m=phi0+2*pi*m/N

phi0 : float (default=0)
Reference phase angle.

Returns state : qobj
Ket vector for mth Pegg-Barnett phase operator basis state.

Notes

The Pegg-Barnett basis states form a complete set over the truncated Hilbert space.
state_number_enumerate(dims, excitations=None, state=None, idx=0)

An iterator that enumerate all the state number arrays (quantum numbers on the form [n1, n2, n3, ...]) for a
system with dimensions given by dims.

Example:

>>> for state in state_number_enumerate([2,2]):
>>> print(state)
[0. 0.]
[0. 1.]
[1. 0.]
[1. 1.]

Parameters dims : list or array
The quantum state dimensions array, as it would appear in a Qobj.

state : list

150

Current state in the iteration. Used internally.
excitations : integer (None)

Restrict state space to states with excitation numbers below or equal to this value.
idx : integer

Current index in the iteration. Used internally.
Returns state_number : list

Successive state number arrays that can be used in loops and other iterations, using
standard state enumeration by definition.

state_number_index(dims, state)
Return the index of a quantum state corresponding to state, given a system with dimensions given by dims.

Example:

>>> state_number_index([2, 2, 2], [1, 1, 0])
6.0

Parameters dims : list or array
The quantum state dimensions array, as it would appear in a Qobj.

state : list
State number array.

Returns idx : list
The index of the state given by state in standard enumeration ordering.

state_index_number(dims, index)
Return a quantum number representation given a state index, for a system of composite structure defined by
dims.

Example:

>>> state_index_number([2, 2, 2], 6)
[1, 1, 0]

Parameters dims : list or array
The quantum state dimensions array, as it would appear in a Qobj.

index : integer
The index of the state in standard enumeration ordering.

Returns state : list
The state number array corresponding to index index in standard enumeration or-
dering.

state_number_qobj(dims, state)
Return a Qobj representation of a quantum state specified by the state array state.

Example:

>>> state_number_qobj([2, 2, 2], [1, 0, 1])
Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = [8, 1], type = ket
Qobj data =
[[0.]
[0.]
[0.]
[0.]
[0.]
[1.]
[0.]
[0.]]

Parameters dims : list or array
The quantum state dimensions array, as it would appear in a Qobj.

151

state : list
State number array.

Returns state : qutip.Qobj.qobj
The state as a qutip.Qobj.qobj instance.

enr_state_dictionaries(dims, excitations)
Return the number of states, and lookup-dictionaries for translating a state tuple to a state index, and vice
versa, for a system with a given number of components and maximum number of excitations.

Parameters dims: list
A list with the number of states in each sub-system.

excitations : integer
The maximum numbers of dimension

Returns nstates, state2idx, idx2state: integer, dict, dict
The number of states nstates, a dictionary for looking up state indices from a state
tuple, and a dictionary for looking up state state tuples from state indices.

enr_thermal_dm(dims, excitations, n)
Generate the density operator for a thermal state in the excitation-number- restricted state space defined by
the dims and exciations arguments. See the documentation for enr_fock for a more detailed description of
these arguments. The temperature of each mode in dims is specified by the average number of excitatons n.

Parameters dims : list
A list of the dimensions of each subsystem of a composite quantum system.

excitations : integer
The maximum number of excitations that are to be included in the state space.

n : integer
The average number of exciations in the thermal state. n can be a float (which then
applies to each mode), or a list/array of the same length as dims, in which each
element corresponds specifies the temperature of the corresponding mode.

Returns dm : Qobj
Thermal state density matrix.

enr_fock(dims, excitations, state)
Generate the Fock state representation in a excitation-number restricted state space. The dims argument
is a list of integers that define the number of quantums states of each component of a composite quantum
system, and the excitations specifies the maximum number of excitations for the basis states that are to be
included in the state space. The state argument is a tuple of integers that specifies the state (in the number
basis representation) for which to generate the Fock state representation.

Parameters dims : list
A list of the dimensions of each subsystem of a composite quantum system.

excitations : integer
The maximum number of excitations that are to be included in the state space.

state : list of integers
The state in the number basis representation.

Returns ket : Qobj
A Qobj instance that represent a Fock state in the exication-number- restricted state
space defined by dims and exciations.

Quantum Operators

This module contains functions for generating Qobj representation of a variety of commonly occuring quantum
operators.
create(N, offset=0)

Creation (raising) operator.

Parameters N : int

152

Dimension of Hilbert space.
Returns oper : qobj

Qobj for raising operator.
offset : int (default 0)

The lowest number state that is included in the finite number state representation of
the operator.

Examples

>>> create(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
[1.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
[0.00000000+0.j 1.41421356+0.j 0.00000000+0.j 0.00000000+0.j]
[0.00000000+0.j 0.00000000+0.j 1.73205081+0.j 0.00000000+0.j]]

destroy(N, offset=0)
Destruction (lowering) operator.

Parameters N : int
Dimension of Hilbert space.

offset : int (default 0)
The lowest number state that is included in the finite number state representation of
the operator.

Returns oper : qobj
Qobj for lowering operator.

Examples

>>> destroy(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[0.00000000+0.j 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
[0.00000000+0.j 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j]
[0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j]
[0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]]

displace(N, alpha, offset=0)
Single-mode displacement operator.

Parameters N : int
Dimension of Hilbert space.

alpha : float/complex
Displacement amplitude.

offset : int (default 0)
The lowest number state that is included in the finite number state representation of
the operator.

Returns oper : qobj
Displacement operator.

Examples

153

>>> displace(4,0.25)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[0.96923323+0.j -0.24230859+0.j 0.04282883+0.j -0.00626025+0.j]
[0.24230859+0.j 0.90866411+0.j -0.33183303+0.j 0.07418172+0.j]
[0.04282883+0.j 0.33183303+0.j 0.84809499+0.j -0.41083747+0.j]
[0.00626025+0.j 0.07418172+0.j 0.41083747+0.j 0.90866411+0.j]]

jmat(j, *args)
Higher-order spin operators:

Parameters j : float
Spin of operator

args : str
Which operator to return ‘x’,’y’,’z’,’+’,’-‘. If no args given, then output is
[’x’,’y’,’z’]

Returns jmat : qobj/list
qobj for requested spin operator(s).

Notes

If no ‘args’ input, then returns array of [’x’,’y’,’z’] operators.

Examples

>>> jmat(1)
[Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[0. 0.70710678 0.]
[0.70710678 0. 0.70710678]
[0. 0.70710678 0.]]
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[0.+0.j 0.+0.70710678j 0.+0.j]
[0.-0.70710678j 0.+0.j 0.+0.70710678j]
[0.+0.j 0.-0.70710678j 0.+0.j]]
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[1. 0. 0.]
[0. 0. 0.]
[0. 0. -1.]]]

num(N, offset=0)
Quantum object for number operator.

Parameters N : int
The dimension of the Hilbert space.

offset : int (default 0)
The lowest number state that is included in the finite number state representation of
the operator.

Returns oper: qobj
Qobj for number operator.

Examples

154

>>> num(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[0 0 0 0]
[0 1 0 0]
[0 0 2 0]
[0 0 0 3]]

qeye(N)
Identity operator

Parameters N : int or list of ints
Dimension of Hilbert space. If provided as a list of ints, then the dimension is the
product over this list, but the dims property of the new Qobj are set to this list.

Returns oper : qobj
Identity operator Qobj.

Examples

>>> qeye(3)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

identity(N)
Identity operator. Alternative name to qeye.

Parameters N : int or list of ints
Dimension of Hilbert space. If provided as a list of ints, then the dimension is the
product over this list, but the dims property of the new Qobj are set to this list.

Returns oper : qobj
Identity operator Qobj.

qutrit_ops()
Operators for a three level system (qutrit).

Returns opers: array
array of qutrit operators.

sigmam()
Annihilation operator for Pauli spins.

Examples

>>> sigmam()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[0. 0.]
[1. 0.]]

sigmap()
Creation operator for Pauli spins.

Examples

155

>>> sigmam()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[0. 1.]
[0. 0.]]

sigmax()
Pauli spin 1/2 sigma-x operator

Examples

>>> sigmax()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[0. 1.]
[1. 0.]]

sigmay()
Pauli spin 1/2 sigma-y operator.

Examples

>>> sigmay()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[0.+0.j 0.-1.j]
[0.+1.j 0.+0.j]]

sigmaz()
Pauli spin 1/2 sigma-z operator.

Examples

>>> sigmaz()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[1. 0.]
[0. -1.]]

squeeze(N, z, offset=0)
Single-mode Squeezing operator.

Parameters N : int
Dimension of hilbert space.

z : float/complex
Squeezing parameter.

offset : int (default 0)
The lowest number state that is included in the finite number state representation of
the operator.

Returns oper : qutip.qobj.Qobj
Squeezing operator.

Examples

156

>>> squeeze(4, 0.25)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[0.98441565+0.j 0.00000000+0.j 0.17585742+0.j 0.00000000+0.j]
[0.00000000+0.j 0.95349007+0.j 0.00000000+0.j 0.30142443+0.j]
[-0.17585742+0.j 0.00000000+0.j 0.98441565+0.j 0.00000000+0.j]
[0.00000000+0.j -0.30142443+0.j 0.00000000+0.j 0.95349007+0.j]]

squeezing(a1, a2, z)
Generalized squeezing operator.

𝑆(𝑧) = exp

(︂
1

2

(︁
𝑧*𝑎1𝑎2 − 𝑧𝑎†1𝑎

†
2

)︁)︂
Parameters a1 : qutip.qobj.Qobj

Operator 1.
a2 : qutip.qobj.Qobj

Operator 2.
z : float/complex

Squeezing parameter.
Returns oper : qutip.qobj.Qobj

Squeezing operator.

phase(N, phi0=0)
Single-mode Pegg-Barnett phase operator.

Parameters N : int
Number of basis states in Hilbert space.

phi0 : float
Reference phase.

Returns oper : qobj
Phase operator with respect to reference phase.

Notes

The Pegg-Barnett phase operator is Hermitian on a truncated Hilbert space.
enr_destroy(dims, excitations)

Generate annilation operators for modes in a excitation-number-restricted state space. For example, consider
a system consisting of 4 modes, each with 5 states. The total hilbert space size is 5**4 = 625. If we are only
interested in states that contain up to 2 excitations, we only need to include states such as

(0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 1, 0) (0, 0, 1, 1) (0, 0, 2, 0) ...

This function creates annihilation operators for the 4 modes that act within this state space:

a1, a2, a3, a4 = enr_destroy([5, 5, 5, 5], excitations=2)

From this point onwards, the annihiltion operators a1, ..., a4 can be used to setup a Hamiltonian, collapse
operators and expectation-value operators, etc., following the usual pattern.

Parameters dims : list
A list of the dimensions of each subsystem of a composite quantum system.

excitations : integer
The maximum number of excitations that are to be included in the state space.

Returns a_ops : list of qobj
A list of annihilation operators for each mode in the composite quantum system
described by dims.

157

enr_identity(dims, excitations)
Generate the identity operator for the excitation-number restricted state space defined by the dims and
exciations arguments. See the docstring for enr_fock for a more detailed description of these arguments.

Parameters dims : list
A list of the dimensions of each subsystem of a composite quantum system.

excitations : integer
The maximum number of excitations that are to be included in the state space.

state : list of integers
The state in the number basis representation.

Returns op : Qobj
A Qobj instance that represent the identity operator in the exication-number-
restricted state space defined by dims and exciations.

Random Operators and States

This module is a collection of random state and operator generators. The sparsity of the ouput Qobj’s is controlled
by varing the density parameter.
rand_dm(N, density=0.75, pure=False, dims=None)

Creates a random NxN density matrix.

Parameters N : int
Shape of output density matrix.

density : float
Density between [0,1] of output density matrix.

dims : list
Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].

Returns oper : qobj
NxN density matrix quantum operator.

Notes

For small density matrices., choosing a low density will result in an error as no diagonal elements will be
generated such that 𝑇𝑟(𝜌) = 1.

rand_herm(N, density=0.75, dims=None)
Creates a random NxN sparse Hermitian quantum object.

Uses 𝐻 = 𝑋 +𝑋+ where 𝑋 is a randomly generated quantum operator with a given density.

Parameters N : int
Shape of output quantum operator.

density : float
Density between [0,1] of output Hermitian operator.

dims : list
Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].

Returns oper : qobj
NxN Hermitian quantum operator.

rand_ket(N, density=1, dims=None)
Creates a random Nx1 sparse ket vector.

Parameters N : int
Number of rows for output quantum operator.

density : float
Density between [0,1] of output ket state.

158

dims : list
Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[1]].

Returns oper : qobj
Nx1 ket state quantum operator.

rand_unitary(N, density=0.75, dims=None)
Creates a random NxN sparse unitary quantum object.

Uses exp(−𝑖𝐻) where H is a randomly generated Hermitian operator.

Parameters N : int
Shape of output quantum operator.

density : float
Density between [0,1] of output Unitary operator.

dims : list
Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].

Returns oper : qobj
NxN Unitary quantum operator.

Three-Level Atoms

This module provides functions that are useful for simulating the three level atom with QuTiP. A three level atom
(qutrit) has three states, which are linked by dipole transitions so that 1 <-> 2 <-> 3. Depending on there relative
energies they are in the ladder, lambda or vee configuration. The structure of the relevant operators is the same for
any of the three configurations:

Ladder: Lambda: Vee:
|two> |three>

-------|three> ------- -------
| / \ |one> /
| / \ ------- /
| / \ \ /

-------|two> / \ \ /
| / \ \ /
| / \ \ /
| / -------- \ /

-------|one> ------- |three> -------
|one> |two>

References

The naming of qutip operators follows the convention in [R1] .

Notes

Contributed by Markus Baden, Oct. 07, 2011
three_level_basis()

Basis states for a three level atom.

Returns states : array
array of three level atom basis vectors.

three_level_ops()
Operators for a three level system (qutrit)

Returns ops : array
array of three level operators.

159

Superoperators and Liouvillians

operator_to_vector(op)
Create a vector representation of a quantum operator given the matrix representation.

vector_to_operator(op)
Create a matrix representation given a quantum operator in vector form.

liouvillian(H, c_ops=[], data_only=False, chi=None)
Assembles the Liouvillian superoperator from a Hamiltonian and a list of collapse operators. Like liou-
villian, but with an experimental implementation which avoids creating extra Qobj instances, which can be
advantageous for large systems.

Parameters H : qobj
System Hamiltonian.

c_ops : array_like
A list or array of collapse operators.

Returns L : qobj
Liouvillian superoperator.

spost(A)
Superoperator formed from post-multiplication by operator A

Parameters A : qobj
Quantum operator for post multiplication.

Returns super : qobj
Superoperator formed from input qauntum object.

spre(A)
Superoperator formed from pre-multiplication by operator A.

Parameters A : qobj
Quantum operator for pre-multiplication.

Returns super :qobj
Superoperator formed from input quantum object.

sprepost(A, B)
Superoperator formed from pre-multiplication by operator A and post- multiplication of operator B.

Parameters A : Qobj
Quantum operator for pre-multiplication.

B : Qobj
Quantum operator for post-multiplication.

Returns super : Qobj
Superoperator formed from input quantum objects.

lindblad_dissipator(a, b=None, data_only=False)
Lindblad dissipator (generalized) for a single pair of collapse operators (a, b), or for a single collapse
operator (a) when b is not specified:

𝒟[𝑎, 𝑏]𝜌 = 𝑎𝜌𝑏† − 1

2
𝑎†𝑏𝜌− 1

2
𝜌𝑎†𝑏

Parameters a : qobj
Left part of collapse operator.

b : qobj (optional)
Right part of collapse operator. If not specified, b defaults to a.

Returns D : qobj
Lindblad dissipator superoperator.

160

Superoperator Representations

This module implements transformations between superoperator representations, including supermatrix, Kraus,
Choi and Chi (process) matrix formalisms.
to_choi(q_oper)

Converts a Qobj representing a quantum map to the Choi representation, such that the trace of the returned
operator is equal to the dimension of the system.

Parameters q_oper : Qobj
Superoperator to be converted to Choi representation.

Returns choi : Qobj
A quantum object representing the same map as q_oper, such that
choi.superrep == "choi".

Raises TypeError: if the given quantum object is not a map, or cannot be converted
to Choi representation.

to_super(q_oper)
Converts a Qobj representing a quantum map to the supermatrix (Liouville) representation.

Parameters q_oper : Qobj
Superoperator to be converted to supermatrix representation.

Returns superop : Qobj
A quantum object representing the same map as q_oper, such that
superop.superrep == "super".

Raises TypeError: if the given quantum object is not a map, or cannot be converted
to supermatrix representation.

to_kraus(q_oper)
Converts a Qobj representing a quantum map to a list of quantum objects, each representing an operator in
the Kraus decomposition of the given map.

Parameters q_oper : Qobj
Superoperator to be converted to Kraus representation.

Returns kraus_ops : list of Qobj
A list of quantum objects, each representing a Kraus operator in the decomposition
of q_oper.

Raises TypeError: if the given quantum object is not a map, or cannot be
decomposed into Kraus operators.

Functions acting on states and operators

Tensor

Module for the creation of composite quantum objects via the tensor product.
tensor(*args)

Calculates the tensor product of input operators.

Parameters args : array_like
list or array of quantum objects for tensor product.

Returns obj : qobj
A composite quantum object.

Examples

161

>>> tensor([sigmax(), sigmax()])
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[1.+0.j 0.+0.j 0.+0.j 0.+0.j]]

super_tensor(*args)
Calculates the tensor product of input superoperators, by tensoring together the underlying Hilbert spaces
on which each vectorized operator acts.

Parameters args : array_like
list or array of quantum objects with type="super".

Returns obj : qobj
A composite quantum object.

composite(*args)
Given two or more operators, kets or bras, returns the Qobj corresponding to a composite system over
each argument. For ordinary operators and vectors, this is the tensor product, while for superoperators and
vectorized operators, this is the column-reshuffled tensor product.

If a mix of Qobjs supported on Hilbert and Liouville spaces are passed in, the former are promoted. Ordinary
operators are assumed to be unitaries, and are promoted using to_super, while kets and bras are promoted
by taking their projectors and using operator_to_vector(ket2dm(arg)).

tensor_contract(qobj, *pairs)
Contracts a qobj along one or more index pairs. Note that this uses dense representations and thus should
not be used for very large Qobjs.

Parameters pairs : tuple
One or more tuples (i, j) indicating that the i and j dimensions of the original
qobj should be contracted.

Returns cqobj : Qobj
The original Qobj with all named index pairs contracted away.

Expectation Values

expect(oper, state)
Calculates the expectation value for operator(s) and state(s).

Parameters oper : qobj/array-like
A single or a list or operators for expectation value.

state : qobj/array-like
A single or a list of quantum states or density matrices.

Returns expt : float/complex/array-like
Expectation value. real if oper is Hermitian, complex otherwise. A (nested)
array of expectaction values of state or operator are arrays.

Examples

>>> expect(num(4), basis(4, 3))
3

variance(oper, state)
Variance of an operator for the given state vector or density matrix.

Parameters oper : qobj
Operator for expectation value.

state : qobj/list

162

A single or list of quantum states or density matrices..
Returns var : float

Variance of operator ‘oper’ for given state.

Partial Transpose

partial_transpose(rho, mask, method=’dense’)
Return the partial transpose of a Qobj instance rho, where mask is an array/list with length that equals the
number of components of rho (that is, the length of rho.dims[0]), and the values in mask indicates whether
or not the corresponding subsystem is to be transposed. The elements in mask can be boolean or integers 0
or 1, where True/1 indicates that the corresponding subsystem should be tranposed.

Parameters rho : qutip.qobj
A density matrix.

mask : list / array
A mask that selects which subsystems should be transposed.

method : str
choice of method, dense or sparse. The default method is dense. The sparse imple-
mentation can be faster for large and sparse systems (hundreds of quantum states).

Returns rho_pr: qutip.qobj
A density matrix with the selected subsystems transposed.

Entropy Functions

concurrence(rho)
Calculate the concurrence entanglement measure for a two-qubit state.

Parameters state : qobj
Ket, bra, or density matrix for a two-qubit state.

Returns concur : float
Concurrence

References

[R2]
entropy_conditional(rho, selB, base=2.718281828459045, sparse=False)

Calculates the conditional entropy 𝑆(𝐴|𝐵) = 𝑆(𝐴,𝐵) − 𝑆(𝐵) of a slected density matrix component.

Parameters rho : qobj
Density matrix of composite object

selB : int/list
Selected components for density matrix B

base : {e,2}
Base of logarithm.

sparse : {False,True}
Use sparse eigensolver.

Returns ent_cond : float
Value of conditional entropy

entropy_linear(rho)
Linear entropy of a density matrix.

Parameters rho : qobj
sensity matrix or ket/bra vector.

Returns entropy : float
Linear entropy of rho.

163

Examples

>>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1)
>>> entropy_linear(rho)
0.5

entropy_mutual(rho, selA, selB, base=2.718281828459045, sparse=False)
Calculates the mutual information S(A:B) between selection components of a system density matrix.

Parameters rho : qobj
Density matrix for composite quantum systems

selA : int/list
int or list of first selected density matrix components.

selB : int/list
int or list of second selected density matrix components.

base : {e,2}
Base of logarithm.

sparse : {False,True}
Use sparse eigensolver.

Returns ent_mut : float
Mutual information between selected components.

entropy_vn(rho, base=2.718281828459045, sparse=False)
Von-Neumann entropy of density matrix

Parameters rho : qobj
Density matrix.

base : {e,2}
Base of logarithm.

sparse : {False,True}
Use sparse eigensolver.

Returns entropy : float
Von-Neumann entropy of rho.

Examples

>>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1)
>>> entropy_vn(rho,2)
1.0

Density Matrix Metrics

This module contains a collection of functions for calculating metrics (distance measures) between states and
operators.
fidelity(A, B)

Calculates the fidelity (pseudo-metric) between two density matrices. See: Nielsen & Chuang, “Quantum
Computation and Quantum Information”

Parameters A : qobj
Density matrix or state vector.

B : qobj
Density matrix or state vector with same dimensions as A.

Returns fid : float
Fidelity pseudo-metric between A and B.

164

Examples

>>> x = fock_dm(5,3)
>>> y = coherent_dm(5,1)
>>> fidelity(x,y)
0.24104350624628332

tracedist(A, B, sparse=False, tol=0)
Calculates the trace distance between two density matrices.. See: Nielsen & Chuang, “Quantum Computa-
tion and Quantum Information”

Parameters A : qobj
Density matrix or state vector.

B : qobj
Density matrix or state vector with same dimensions as A.

tol : float
Tolerance used by sparse eigensolver, if used. (0=Machine precision)

sparse : {False, True}
Use sparse eigensolver.

Returns tracedist : float
Trace distance between A and B.

Examples

>>> x=fock_dm(5,3)
>>> y=coherent_dm(5,1)
>>> tracedist(x,y)
0.9705143161472971

bures_dist(A, B)
Returns the Bures distance between two density matrices A & B.

The Bures distance ranges from 0, for states with unit fidelity, to sqrt(2).

Parameters A : qobj
Density matrix or state vector.

B : qobj
Density matrix or state vector with same dimensions as A.

Returns dist : float
Bures distance between density matrices.

bures_angle(A, B)
Returns the Bures Angle between two density matrices A & B.

The Bures angle ranges from 0, for states with unit fidelity, to pi/2.

Parameters A : qobj
Density matrix or state vector.

B : qobj
Density matrix or state vector with same dimensions as A.

Returns angle : float
Bures angle between density matrices.

hilbert_dist(A, B)
Returns the Hilbert-Schmidt distance between two density matrices A & B.

Parameters A : qobj
Density matrix or state vector.

165

B : qobj
Density matrix or state vector with same dimensions as A.

Returns dist : float
Hilbert-Schmidt distance between density matrices.

Notes

See V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).
average_gate_fidelity(oper)

Given a Qobj representing the supermatrix form of a map, returns the average gate fidelity (pseudo-metric)
of that map.

Parameters A : Qobj
Quantum object representing a superoperator.

Returns fid : float
Fidelity pseudo-metric between A and the identity superoperator.

process_fidelity(U1, U2, normalize=True)
Calculate the process fidelity given two process operators.

Continous Variables

This module contains a collection functions for calculating continuous variable quantities from fock-basis repre-
sentation of the state of multi-mode fields.
correlation_matrix(basis, rho=None)

Given a basis set of operators {𝑎}𝑛, calculate the correlation matrix:

𝐶𝑚𝑛 = ⟨𝑎𝑚𝑎𝑛⟩

Parameters basis : list of qutip.qobj.Qobj
List of operators that defines the basis for the correlation matrix.

rho : qutip.qobj.Qobj
Density matrix for which to calculate the correlation matrix. If rho is None, then a
matrix of correlation matrix operators is returned instead of expectation values of
those operators.

Returns corr_mat: array
A 2-dimensional array of correlation values or operators.

covariance_matrix(basis, rho, symmetrized=True)
Given a basis set of operators {𝑎}𝑛, calculate the covariance matrix:

𝑉𝑚𝑛 =
1

2
⟨𝑎𝑚𝑎𝑛 + 𝑎𝑛𝑎𝑚⟩ − ⟨𝑎𝑚⟩⟨𝑎𝑛⟩

or, if of the optional argument symmetrized=False,

𝑉𝑚𝑛 = ⟨𝑎𝑚𝑎𝑛⟩ − ⟨𝑎𝑚⟩⟨𝑎𝑛⟩

Parameters basis : list of qutip.qobj.Qobj
List of operators that defines the basis for the covariance matrix.

rho : qutip.qobj.Qobj
Density matrix for which to calculate the covariance matrix.

symmetrized : bool
Flag indicating whether the symmetrized (default) or non-symmetrized correlation
matrix is to be calculated.

Returns corr_mat: array
A 2-dimensional array of covariance values.

166

correlation_matrix_field(a1, a2, rho=None)
Calculate the correlation matrix for given field operators 𝑎1 and 𝑎2. If a density matrix is given the expec-
tation values are calculated, otherwise a matrix with operators is returned.

Parameters a1 : qutip.qobj.Qobj
Field operator for mode 1.

a2 : qutip.qobj.Qobj
Field operator for mode 2.

rho : qutip.qobj.Qobj
Density matrix for which to calculate the covariance matrix.

Returns cov_mat: array of complex numbers or qutip.qobj.Qobj
A 2-dimensional array of covariance values, or, if rho=0, a matrix of operators.

correlation_matrix_quadrature(a1, a2, rho=None)
Calculate the quadrature correlation matrix with given field operators 𝑎1 and 𝑎2. If a density matrix is given
the expectation values are calculated, otherwise a matrix with operators is returned.

Parameters a1 : qutip.qobj.Qobj
Field operator for mode 1.

a2 : qutip.qobj.Qobj
Field operator for mode 2.

rho : qutip.qobj.Qobj
Density matrix for which to calculate the covariance matrix.

Returns corr_mat: array of complex numbers or qutip.qobj.Qobj
A 2-dimensional array of covariance values for the field quadratures, or, if rho=0,
a matrix of operators.

wigner_covariance_matrix(a1=None, a2=None, R=None, rho=None)
Calculate the Wigner covariance matrix 𝑉𝑖𝑗 = 1

2 (𝑅𝑖𝑗 +𝑅𝑗𝑖), given the quadrature correlation matrix 𝑅𝑖𝑗 =
⟨𝑅𝑖𝑅𝑗⟩−⟨𝑅𝑖⟩⟨𝑅𝑗⟩, where 𝑅 = (𝑞1, 𝑝1, 𝑞2, 𝑝2)𝑇 is the vector with quadrature operators for the two modes.

Alternatively, if R = None, and if annihilation operators a1 and a2 for the two modes are supplied instead,
the quadrature correlation matrix is constructed from the annihilation operators before then the covariance
matrix is calculated.

Parameters a1 : qutip.qobj.Qobj
Field operator for mode 1.

a2 : qutip.qobj.Qobj
Field operator for mode 2.

R : array
The quadrature correlation matrix.

rho : qutip.qobj.Qobj
Density matrix for which to calculate the covariance matrix.

Returns cov_mat: array
A 2-dimensional array of covariance values.

logarithmic_negativity(V)
Calculate the logarithmic negativity given the symmetrized covariance matrix, see
qutip.continous_variables.covariance_matrix. Note that the two-mode field state
that is described by V must be Gaussian for this function to applicable.

Parameters V : 2d array
The covariance matrix.

Returns N: float, the logarithmic negativity for the two-mode Gaussian state
that is described by the the Wigner covariance matrix V.

167

Dynamics and Time-Evolution

Schrödinger Equation

This module provides solvers for the unitary Schrodinger equation.
sesolve(H, rho0, tlist, e_ops, args={}, options=None, progress_bar=<qutip.ui.progressbar.BaseProgressBar

object at 0x105876c90>)
Schrodinger equation evolution of a state vector for a given Hamiltonian.

Evolve the state vector or density matrix (rho0) using a given Hamiltonian (H), by integrating the set of
ordinary differential equations that define the system.

The output is either the state vector at arbitrary points in time (tlist), or the expectation values of the supplied
operators (e_ops). If e_ops is a callback function, it is invoked for each time in tlist with time and the state
as arguments, and the function does not use any return values.

Parameters H : qutip.qobj
system Hamiltonian, or a callback function for time-dependent Hamiltonians.

rho0 : qutip.qobj
initial density matrix or state vector (ket).

tlist : list / array
list of times for 𝑡.

e_ops : list of qutip.qobj / callback function single
single operator or list of operators for which to evaluate expectation values.

args : dictionary
dictionary of parameters for time-dependent Hamiltonians and collapse operators.

options : qutip.Qdeoptions
with options for the ODE solver.

Returns output: qutip.solver
An instance of the class qutip.solver, which contains either an array of expec-
tation values for the times specified by tlist, or an array or state vectors or density
matrices corresponding to the times in tlist [if e_ops is an empty list], or nothing if
a callback function was given inplace of operators for which to calculate the expec-
tation values.

Master Equation

This module provides solvers for the Lindblad master equation and von Neumann equation.
mesolve(H, rho0, tlist, c_ops, e_ops, args={}, options=None, progress_bar=None)

Master equation evolution of a density matrix for a given Hamiltonian and set of collapse operators, or a
Liouvillian.

Evolve the state vector or density matrix (rho0) using a given Hamiltonian (H) and an [optional] set of col-
lapse operators (c_ops), by integrating the set of ordinary differential equations that define the system. In the
absence of collapse operators the system is evolved according to the unitary evolution of the Hamiltonian.

The output is either the state vector at arbitrary points in time (tlist), or the expectation values of the supplied
operators (e_ops). If e_ops is a callback function, it is invoked for each time in tlist with time and the state
as arguments, and the function does not use any return values.

If either H or the Qobj elements in c_ops are superoperators, they will be treated as direct contributions to
the total system Liouvillian. This allows to solve master equations that are not on standard Lindblad form
by passing a custom Liouvillian in place of either the H or c_ops elements.

Time-dependent operators
For time-dependent problems, H and c_ops can be callback functions that takes two arguments, time and
args, and returns the Hamiltonian or Liouvillian for the system at that point in time (callback format).

Alternatively, H and c_ops can be a specified in a nested-list format where each element in the list is a list of
length 2, containing an operator (qutip.qobj) at the first element and where the second element is either
a string (list string format), a callback function (list callback format) that evaluates to the time-dependent
coefficient for the corresponding operator, or a NumPy array (list array format) which specifies the value of
the coefficient to the corresponding operator for each value of t in tlist.

168

Examples

H = [[H0, ‘sin(w*t)’], [H1, ‘sin(2*w*t)’]]
H = [[H0, f0_t], [H1, f1_t]]
where f0_t and f1_t are python functions with signature f_t(t, args).
H = [[H0, np.sin(w*tlist)], [H1, np.sin(2*w*tlist)]]

In the list string format and list callback format, the string expression and the callback function must eval-
uate to a real or complex number (coefficient for the corresponding operator).

In all cases of time-dependent operators, args is a dictionary of parameters that is used when evaluating
operators. It is passed to the callback functions as second argument.

Additional options
Additional options to mesolve can be set via the options argument, which should be an instance of
qutip.solver.Options. Many ODE integration options can be set this way, and the store_states
and store_final_state options can be used to store states even though expectation values are requested via
the e_ops argument.

Note: If an element in the list-specification of the Hamiltonian or the list of collapse operators are in
superoperator form it will be added to the total Liouvillian of the problem with out further transformation.
This allows for using mesolve for solving master equations that are not on standard Lindblad form.

Note: On using callback function: mesolve transforms all qutip.qobj objects to sparse matrices before
handing the problem to the integrator function. In order for your callback function to work correctly, pass
all qutip.qobj objects that are used in constructing the Hamiltonian via args. mesolve will check for
qutip.qobj in args and handle the conversion to sparse matrices. All other qutip.qobj objects that
are not passed via args will be passed on to the integrator in scipy which will raise an NotImplemented
exception.

Parameters H : qutip.Qobj
System Hamiltonian, or a callback function for time-dependent Hamiltonians, or
alternatively a system Liouvillian.

rho0 : qutip.Qobj
initial density matrix or state vector (ket).

tlist : list / array
list of times for 𝑡.

c_ops : list of qutip.Qobj
single collapse operator, or list of collapse operators, or a list of Liouvillian super-
operators.

e_ops : list of qutip.Qobj / callback function single
single operator or list of operators for which to evaluate expectation values.

args : dictionary
dictionary of parameters for time-dependent Hamiltonians and collapse operators.

options : qutip.Options
with options for the solver.

progress_bar: BaseProgressBar
Optional instance of BaseProgressBar, or a subclass thereof, for showing the
progress of the simulation.

Returns result: qutip.Result
An instance of the class qutip.Result, which contains either an array re-
sult.expect of expectation values for the times specified by tlist, or an array re-
sult.states of state vectors or density matrices corresponding to the times in tlist
[if e_ops is an empty list], or nothing if a callback function was given in place of
operators for which to calculate the expectation values.

169

Monte Carlo Evolution

mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=None, progress_bar=True,
map_func=None, map_kwargs=None)

Monte Carlo evolution of a state vector |𝜓⟩ for a given Hamiltonian and sets of collapse operators, and
possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by
the Options class.

mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of
strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one
constant term.

As an example of a time-dependent problem, consider a Hamiltonian with two terms H0 and H1, where
H1 is time-dependent with coefficient sin(w*t), and collapse operators C0 and C1, where C1 is time-
dependent with coeffcient exp(-a*t). Here, w and a are constant arguments with values W and A.

Using the Python function time-dependent format requires two Python functions, one for each collapse
coefficient. Therefore, this problem could be expressed as:

def H1_coeff(t,args):
return sin(args['w']*t)

def C1_coeff(t,args):
return exp(-args['a']*t)

H = [H0, [H1, H1_coeff]]

c_ops = [C0, [C1, C1_coeff]]

args={'a': A, 'w': W}

or in String (Cython) format we could write:

H = [H0, [H1, 'sin(w*t)']]

c_ops = [C0, [C1, 'exp(-a*t)']]

args={'a': A, 'w': W}

Constant terms are preferably placed first in the Hamiltonian and collapse operator lists.

Parameters H : qutip.Qobj
System Hamiltonian.

psi0 : qutip.Qobj
Initial state vector

tlist : array_like
Times at which results are recorded.

ntraj : int
Number of trajectories to run.

c_ops : array_like
single collapse operator or list or array of collapse operators.

e_ops : array_like
single operator or list or array of operators for calculating expectation values.

args : dict
Arguments for time-dependent Hamiltonian and collapse operator terms.

options : Options
Instance of ODE solver options.

progress_bar: BaseProgressBar
Optional instance of BaseProgressBar, or a subclass thereof, for showing the
progress of the simulation. Set to None to disable the progress bar.

170

map_func: function
A map function for managing the calls to the single-trajactory solver.

map_kwargs: dictionary
Optional keyword arguments to the map_func function.

Returns results : qutip.solver.Result
Object storing all results from the simulation.

Note: It is possible to reuse the random number seeds from a previous run of the
mcsolver by passing the output Result object seeds via the Options class, i.e. Op-
tions(seeds=prev_result.seeds).

mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None, options=<qutip.solver.Options instance at
0x1048d6b48>, sparse_dms=True, serial=False, ptrace_sel=[], calc_entropy=False)

Monte-Carlo wave function solver with fortran 90 backend. Usage is identical to qutip.mcsolve, for prob-
lems without explicit time-dependence, and with some optional input:

Parameters H : qobj
System Hamiltonian.

psi0 : qobj
Initial state vector

tlist : array_like
Times at which results are recorded.

ntraj : int
Number of trajectories to run.

c_ops : array_like
list or array of collapse operators.

e_ops : array_like
list or array of operators for calculating expectation values.

options : Options
Instance of solver options.

sparse_dms : boolean
If averaged density matrices are returned, they will be stored as sparse (Compressed
Row Format) matrices during computation if sparse_dms = True (default), and
dense matrices otherwise. Dense matrices might be preferable for smaller systems.

serial : boolean
If True (default is False) the solver will not make use of the multiprocessing module,
and simply run in serial.

ptrace_sel: list
This optional argument specifies a list of components to keep when returning a
partially traced density matrix. This can be convenient for large systems where
memory becomes a problem, but you are only interested in parts of the density
matrix.

calc_entropy : boolean
If ptrace_sel is specified, calc_entropy=True will have the solver return the averaged
entropy over trajectories in results.entropy. This can be interpreted as a measure of
entanglement. See Phys. Rev. Lett. 93, 120408 (2004), Phys. Rev. A 86, 022310
(2012).

Returns results : Result
Object storing all results from simulation.

Exponential Series

essolve(H, rho0, tlist, c_op_list, e_ops)
Evolution of a state vector or density matrix (rho0) for a given Hamiltonian (H) and set of collapse operators
(c_op_list), by expressing the ODE as an exponential series. The output is either the state vector at arbitrary
points in time (tlist), or the expectation values of the supplied operators (e_ops).

171

Parameters H : qobj/function_type
System Hamiltonian.

rho0 : qutip.qobj
Initial state density matrix.

tlist : list/array
list of times for 𝑡.

c_op_list : list of qutip.qobj
list of qutip.qobj collapse operators.

e_ops : list of qutip.qobj
list of qutip.qobj operators for which to evaluate expectation values.

Returns expt_array : array
Expectation values of wavefunctions/density matrices for the times specified in
tlist.

Note: This solver does not support time-dependent Hamiltonians.

ode2es(L, rho0)
Creates an exponential series that describes the time evolution for the initial density matrix (or state vector)
rho0, given the Liouvillian (or Hamiltonian) L.

Parameters L : qobj
Liouvillian of the system.

rho0 : qobj
Initial state vector or density matrix.

Returns eseries : qutip.eseries
eseries represention of the system dynamics.

Bloch-Redfield Master Equation

brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=None, args={}, op-
tions=<qutip.solver.Options instance at 0x105963320>)

Solve the dynamics for a system using the Bloch-Redfield master equation.

Note: This solver does not currently support time-dependent Hamiltonians.

Parameters H : qutip.Qobj
System Hamiltonian.

rho0 / psi0: :class:‘qutip.Qobj‘
Initial density matrix or state vector (ket).

tlist : list / array
List of times for 𝑡.

a_ops : list of qutip.qobj
List of system operators that couple to bath degrees of freedom.

e_ops : list of qutip.qobj / callback function
List of operators for which to evaluate expectation values.

c_ops : list of qutip.qobj
List of system collapse operators.

args : dictionary
Placeholder for future implementation, kept for API consistency.

options : qutip.solver.Options
Options for the solver.

Returns result: qutip.solver.Result

172

An instance of the class qutip.solver.Result, which contains either an array
of expectation values, for operators given in e_ops, or a list of states for the times
specified by tlist.

bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops=None, use_secular=True)
Calculate the Bloch-Redfield tensor for a system given a set of operators and corresponding spectral func-
tions that describes the system’s coupling to its environment.

Note: This tensor generation requires a time-independent Hamiltonian.

Parameters H : qutip.qobj
System Hamiltonian.

a_ops : list of qutip.qobj
List of system operators that couple to the environment.

spectra_cb : list of callback functions
List of callback functions that evaluate the noise power spectrum at a given fre-
quency.

c_ops : list of qutip.qobj
List of system collapse operators.

use_secular : bool
Flag (True of False) that indicates if the secular approximation should be used.

Returns R, kets: qutip.Qobj, list of qutip.Qobj
R is the Bloch-Redfield tensor and kets is a list eigenstates of the Hamiltonian.

bloch_redfield_solve(R, ekets, rho0, tlist, e_ops=[], options=None)
Evolve the ODEs defined by Bloch-Redfield master equation. The Bloch-Redfield tensor can be calculated
by the function bloch_redfield_tensor.

Parameters R : qutip.qobj
Bloch-Redfield tensor.

ekets : array of qutip.qobj
Array of kets that make up a basis tranformation for the eigenbasis.

rho0 : qutip.qobj
Initial density matrix.

tlist : list / array
List of times for 𝑡.

e_ops : list of qutip.qobj / callback function
List of operators for which to evaluate expectation values.

options : qutip.Qdeoptions
Options for the ODE solver.

Returns output: qutip.solver
An instance of the class qutip.solver, which contains either an array of ex-
pectation values for the times specified by tlist.

Floquet States and Floquet-Markov Master Equation

fmmesolve(H, rho0, tlist, c_ops, e_ops=[], spectra_cb=[], T=None, args={}, op-
tions=<qutip.solver.Options instance at 0x105963290>, floquet_basis=True, kmax=5)

Solve the dynamics for the system using the Floquet-Markov master equation.

Note: This solver currently does not support multiple collapse operators.

Parameters H : qutip.qobj
system Hamiltonian.

rho0 / psi0 : qutip.qobj

173

initial density matrix or state vector (ket).
tlist : list / array

list of times for 𝑡.
c_ops : list of qutip.qobj

list of collapse operators.
e_ops : list of qutip.qobj / callback function

list of operators for which to evaluate expectation values.
spectra_cb : list callback functions

List of callback functions that compute the noise power spectrum as a function of
frequency for the collapse operators in c_ops.

T : float
The period of the time-dependence of the hamiltonian. The default value ‘None’
indicates that the ‘tlist’ spans a single period of the driving.

args : dictionary
dictionary of parameters for time-dependent Hamiltonians and collapse operators.
This dictionary should also contain an entry ‘w_th’, which is the temperature of
the environment (if finite) in the energy/frequency units of the Hamiltonian. For
example, if the Hamiltonian written in units of 2pi GHz, and the temperature is
given in K, use the following conversion

>>> temperature = 25e-3 # unit K
>>> h = 6.626e-34
>>> kB = 1.38e-23
>>> args['w_th'] = temperature * (kB / h) * 2 * pi * 1e-9

options : qutip.solver
options for the ODE solver.

k_max : int
The truncation of the number of sidebands (default 5).

Returns output : qutip.solver
An instance of the class qutip.solver, which contains either an array of ex-
pectation values for the times specified by tlist.

floquet_modes(H, T, args=None, sort=False, U=None)
Calculate the initial Floquet modes Phi_alpha(0) for a driven system with period T.

Returns a list of qutip.qobj instances representing the Floquet modes and a list of corresponding
quasienergies, sorted by increasing quasienergy in the interval [-pi/T, pi/T]. The optional parameter sort
decides if the output is to be sorted in increasing quasienergies or not.

Parameters H : qutip.qobj
system Hamiltonian, time-dependent with period T

args : dictionary
dictionary with variables required to evaluate H

T : float
The period of the time-dependence of the hamiltonian. The default value ‘None’
indicates that the ‘tlist’ spans a single period of the driving.

U : qutip.qobj
The propagator for the time-dependent Hamiltonian with period T. If U
is None (default), it will be calculated from the Hamiltonian H using
qutip.propagator.propagator.

Returns output : list of kets, list of quasi energies
Two lists: the Floquet modes as kets and the quasi energies.

floquet_modes_t(f_modes_0, f_energies, t, H, T, args=None)
Calculate the Floquet modes at times tlist Phi_alpha(tlist) propagting the initial Floquet modes Phi_alpha(0)

Parameters f_modes_0 : list of qutip.qobj (kets)

174

Floquet modes at 𝑡
f_energies : list

Floquet energies.
t : float

The time at which to evaluate the floquet modes.
H : qutip.qobj

system Hamiltonian, time-dependent with period T
args : dictionary

dictionary with variables required to evaluate H
T : float

The period of the time-dependence of the hamiltonian.
Returns output : list of kets

The Floquet modes as kets at time 𝑡

floquet_modes_table(f_modes_0, f_energies, tlist, H, T, args=None)
Pre-calculate the Floquet modes for a range of times spanning the floquet period. Can later be used as a
table to look up the floquet modes for any time.

Parameters f_modes_0 : list of qutip.qobj (kets)
Floquet modes at 𝑡

f_energies : list
Floquet energies.

tlist : array
The list of times at which to evaluate the floquet modes.

H : qutip.qobj
system Hamiltonian, time-dependent with period T

T : float
The period of the time-dependence of the hamiltonian.

args : dictionary
dictionary with variables required to evaluate H

Returns output : nested list
A nested list of Floquet modes as kets for each time in tlist

floquet_modes_t_lookup(f_modes_table_t, t, T)
Lookup the floquet mode at time t in the pre-calculated table of floquet modes in the first period of the
time-dependence.

Parameters f_modes_table_t : nested list of qutip.qobj (kets)
A lookup-table of Floquet modes at times precalculated by
qutip.floquet.floquet_modes_table.

t : float
The time for which to evaluate the Floquet modes.

T : float
The period of the time-dependence of the hamiltonian.

Returns output : nested list
A list of Floquet modes as kets for the time that most closely matching the time t in
the supplied table of Floquet modes.

floquet_states_t(f_modes_0, f_energies, t, H, T, args=None)
Evaluate the floquet states at time t given the initial Floquet modes.

Parameters f_modes_t : list of qutip.qobj (kets)
A list of initial Floquet modes (for time 𝑡 = 0).

f_energies : array
The Floquet energies.

175

t : float
The time for which to evaluate the Floquet states.

H : qutip.qobj
System Hamiltonian, time-dependent with period T.

T : float
The period of the time-dependence of the hamiltonian.

args : dictionary
Dictionary with variables required to evaluate H.

Returns output : list
A list of Floquet states for the time 𝑡.

floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T, args=None)
Evaluate the wavefunction for a time t using the Floquet state decompositon, given the initial Floquet modes.

Parameters f_modes_t : list of qutip.qobj (kets)
A list of initial Floquet modes (for time 𝑡 = 0).

f_energies : array
The Floquet energies.

f_coeff : array
The coefficients for Floquet decomposition of the initial wavefunction.

t : float
The time for which to evaluate the Floquet states.

H : qutip.qobj
System Hamiltonian, time-dependent with period T.

T : float
The period of the time-dependence of the hamiltonian.

args : dictionary
Dictionary with variables required to evaluate H.

Returns output : qutip.qobj
The wavefunction for the time 𝑡.

floquet_state_decomposition(f_states, f_energies, psi)
Decompose the wavefunction psi (typically an initial state) in terms of the Floquet states, 𝜓 =

∑︀
𝛼 𝑐𝛼𝜓𝛼(0).

Parameters f_states : list of qutip.qobj (kets)
A list of Floquet modes.

f_energies : array
The Floquet energies.

psi : qutip.qobj
The wavefunction to decompose in the Floquet state basis.

Returns output : array
The coefficients 𝑐𝛼 in the Floquet state decomposition.

fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100)
Solve the Schrodinger equation using the Floquet formalism.

Parameters H : qutip.qobj.Qobj
System Hamiltonian, time-dependent with period T.

psi0 : qutip.qobj
Initial state vector (ket).

tlist : list / array
list of times for 𝑡.

e_ops : list of qutip.qobj / callback function
list of operators for which to evaluate expectation values. If this list is empty, the
state vectors for each time in tlist will be returned instead of expectation values.

176

T : float
The period of the time-dependence of the hamiltonian.

args : dictionary
Dictionary with variables required to evaluate H.

Tsteps : integer
The number of time steps in one driving period for which to precalculate the Floquet
modes. Tsteps should be an even number.

Returns output : qutip.solver.Result
An instance of the class qutip.solver.Result, which contains either an ar-
ray of expectation values or an array of state vectors, for the times specified by
tlist.

Stochastic Schrödinger Equation and Master Equation

This module contains functions for solving stochastic schrodinger and master equations. The API should not be
considered stable, and is subject to change when we work more on optimizing this module for performance and
features.
smesolve(H, rho0, times, c_ops, sc_ops, e_ops, **kwargs)

Solve stochastic master equation. Dispatch to specific solvers depending on the value of the solver keyword
argument.

Parameters H : qutip.Qobj
System Hamiltonian.

rho0 : qutip.Qobj
Initial density matrix or state vector (ket).

times : list / array
List of times for 𝑡. Must be uniformly spaced.

c_ops : list of qutip.Qobj
Deterministic collapse operator which will contribute with a standard Lindblad type
of dissipation.

sc_ops : list of qutip.Qobj
List of stochastic collapse operators. Each stochastic collapse operator will give
a deterministic and stochastic contribution to the eqaution of motion according to
how the d1 and d2 functions are defined.

e_ops : list of qutip.Qobj / callback function single
single operator or list of operators for which to evaluate expectation values.

kwargs : dictionary
Optional keyword arguments. See qutip.stochastic.StochasticSolverOptions.

Returns output: qutip.solver.SolverResult
An instance of the class qutip.solver.SolverResult.

ssesolve(H, psi0, times, sc_ops, e_ops, **kwargs)
Solve the stochastic Schrödinger equation. Dispatch to specific solvers depending on the value of the solver
keyword argument.

Parameters H : qutip.Qobj
System Hamiltonian.

psi0 : qutip.Qobj
Initial state vector (ket).

times : list / array
List of times for 𝑡. Must be uniformly spaced.

sc_ops : list of qutip.Qobj
List of stochastic collapse operators. Each stochastic collapse operator will give
a deterministic and stochastic contribution to the equation of motion according to
how the d1 and d2 functions are defined.

177

e_ops : list of qutip.Qobj
Single operator or list of operators for which to evaluate expectation values.

kwargs : dictionary
Optional keyword arguments. See qutip.stochastic.StochasticSolverOptions.

Returns output: qutip.solver.SolverResult
An instance of the class qutip.solver.SolverResult.

smepdpsolve(H, rho0, times, c_ops, e_ops, **kwargs)
A stochastic (piecewse deterministic process) PDP solver for density matrix evolution.

Parameters H : qutip.Qobj
System Hamiltonian.

rho0 : qutip.Qobj
Initial density matrix.

times : list / array
List of times for 𝑡. Must be uniformly spaced.

c_ops : list of qutip.Qobj
Deterministic collapse operator which will contribute with a standard Lindblad type
of dissipation.

sc_ops : list of qutip.Qobj
List of stochastic collapse operators. Each stochastic collapse operator will give
a deterministic and stochastic contribution to the eqaution of motion according to
how the d1 and d2 functions are defined.

e_ops : list of qutip.Qobj / callback function single
single operator or list of operators for which to evaluate expectation values.

kwargs : dictionary
Optional keyword arguments. See qutip.stochastic.StochasticSolverOptions.

Returns output: qutip.solver.SolverResult
An instance of the class qutip.solver.SolverResult.

ssepdpsolve(H, psi0, times, c_ops, e_ops, **kwargs)
A stochastic (piecewse deterministic process) PDP solver for wavefunction evolution. For most purposes,
use qutip.mcsolve instead for quantum trajectory simulations.

Parameters H : qutip.Qobj
System Hamiltonian.

psi0 : qutip.Qobj
Initial state vector (ket).

times : list / array
List of times for 𝑡. Must be uniformly spaced.

c_ops : list of qutip.Qobj
Deterministic collapse operator which will contribute with a standard Lindblad type
of dissipation.

e_ops : list of qutip.Qobj / callback function single
single operator or list of operators for which to evaluate expectation values.

kwargs : dictionary
Optional keyword arguments. See qutip.stochastic.StochasticSolverOptions.

Returns output: qutip.solver.SolverResult
An instance of the class qutip.solver.SolverResult.

178

Correlation Functions

correlation(H, state0, tlist, taulist, c_ops, a_op, b_op, solver=’me’, reverse=False, args=None, op-
tions=<qutip.solver.Options instance at 0x105963a70>)

Calculate the two-operator two-time correlation function: ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ along two time axes
using the quantum regression theorem and the evolution solver indicated by the solver parameter.

Parameters H : qutip.qobj.Qobj
system Hamiltonian.

state0 [qutip.qobj.Qobj] Initial state density matrix 𝜌(𝑡0) or state vector
𝜓(𝑡0). If ‘state0’ is ‘None’, then the steady state will be used as the initial state.
The ‘steady-state’ is only implemented for the me and es solvers.

tlist [list / array] list of times for 𝑡. tlist must be positive and contain the element
0. When taking steady-steady correlations only one tlist value is necessary, i.e.
:math:‘t

ightarrow infty‘; here tlist is
automatically set, ignoring user input.

taulist [list / array] list of times for 𝜏 . taulist must be positive and contain the
element 0.

c_ops [list of qutip.qobj.Qobj] list of collapse operators.
a_op [qutip.qobj.Qobj] operator A.
b_op [qutip.qobj.Qobj] operator B.
reverse [bool] If True, calculate ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩ instead of ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩.
solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es

for exponential series)
options [qutip.solver.Options] solver options class. ntraj is taken as a

two-element list because the mc correlator calls mcsolve() recursively; by de-
fault, ntraj=[20, 100]. mc_corr_eps prevents divide-by-zero errors in the mc
correlator; by default, mc_corr_eps=1e-10.

Returns corr_mat: array
An 2-dimensional array (matrix) of correlation values for the times specified by
tlist (first index) and taulist (second index). If tlist is None, then a 1-dimensional
array of correlation values is returned instead.

correlation_ss(H, taulist, c_ops, a_op, b_op, solver=’me’, reverse=False, args=None, op-
tions=<qutip.solver.Options instance at 0x105963a28>)

Calculate the two-operator two-time correlation function:

lim
𝑡𝑜∞

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩

along one time axis (given steady-state initial conditions) using the quantum regression theorem and the
evolution solver indicated by the solver parameter.

Parameters H : qutip.qobj.Qobj
system Hamiltonian.

taulist : list / array
list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops : list of qutip.qobj.Qobj
list of collapse operators.

a_op : qutip.qobj.Qobj
operator A.

b_op : qutip.qobj.Qobj
operator B.

reverse : bool
If True, calculate lim𝑡𝑜∞ ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩ instead of lim𝑡𝑜∞ ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩.

179

solver : str
choice of solver (me for master-equation and es for exponential series)

options : qutip.solver.Options
solver options class. ntraj is taken as a two-element list because the mc correla-
tor calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps prevents
divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns corr_vec: array
An array of correlation values for the times specified by tlist.

References

See, Gardiner, Quantum Noise, Section 5.2.
correlation_2op_1t(H, state0, taulist, c_ops, a_op, b_op, solver=’me’, reverse=False, args=None,

options=<qutip.solver.Options instance at 0x1059637e8>)
Calculate the two-operator two-time correlation function: :math: left<A(t+tau)B(t)right> along one time
axis using the quantum regression theorem and the evolution solver indicated by the solver parameter.

Parameters H : qutip.qobj.Qobj
system Hamiltonian.

state0 : qutip.qobj.Qobj
Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’, then the
steady state will be used as the initial state. The ‘steady-state’ is only implemented
for the me and es solvers.

taulist : list / array
list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops : list of qutip.qobj.Qobj
list of collapse operators.

a_op : qutip.qobj.Qobj
operator A.

b_op : qutip.qobj.Qobj
operator B.

reverse : bool
If True, calculate ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩ instead of ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩.

solver : str
choice of solver (me for master-equation, mc for Monte Carlo, and es for exponen-
tial series)

options : qutip.solver.Options
solver options class. ntraj is taken as a two-element list because the mc correla-
tor calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps prevents
divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns corr_vec: array
An array of correlation values for the times specified by tlist.

References

See, Gardiner, Quantum Noise, Section 5.2.
correlation_2op_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, solver=’me’, reverse=False,

args=None, options=<qutip.solver.Options instance at 0x1059638c0>)

Calculate the two-operator two-time correlation function: ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ along two time axes
using the quantum regression theorem and the evolution solver indicated by the solver parameter.

Parameters H : qutip.qobj.Qobj
system Hamiltonian.

180

state0 [qutip.qobj.Qobj] Initial state density matrix 𝜌0 or state vector 𝜓0.
If ‘state0’ is ‘None’, then the steady state will be used as the initial state. The
‘steady-state’ is only implemented for the me and es solvers.

tlist [list / array] list of times for 𝑡. tlist must be positive and contain the element
0. When taking steady-steady correlations only one tlist value is necessary, i.e.
:math:‘t

ightarrow infty‘; here tlist is
automatically set, ignoring user input.

taulist [list / array] list of times for 𝜏 . taulist must be positive and contain the
element 0.

c_ops [list of qutip.qobj.Qobj] list of collapse operators.
a_op [qutip.qobj.Qobj] operator A.
b_op [qutip.qobj.Qobj] operator B.
reverse [bool] If True, calculate ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩ instead of ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩.
solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es

for exponential series)
options [qutip.solver.Options] solver options class. ntraj is taken as a

two-element list because the mc correlator calls mcsolve() recursively; by de-
fault, ntraj=[20, 100]. mc_corr_eps prevents divide-by-zero errors in the mc
correlator; by default, mc_corr_eps=1e-10.

Returns corr_mat: array
An 2-dimensional array (matrix) of correlation values for the times specified by
tlist (first index) and taulist (second index). If tlist is None, then a 1-dimensional
array of correlation values is returned instead.

correlation_3op_1t(H, state0, taulist, c_ops, a_op, b_op, c_op, solver=’me’, args=None, op-
tions=<qutip.solver.Options instance at 0x105963908>)

Calculate the three-operator two-time correlation function: ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡)⟩ along one time axis using
the quantum regression theorem and the evolution solver indicated by the solver parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where :math: tau<0.

Parameters H : qutip.qobj.Qobj
system Hamiltonian.

rho0 : qutip.qobj.Qobj
Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’, then the
steady state will be used as the initial state. The ‘steady-state’ is only implemented
for the me and es solvers.

taulist : list / array
list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops : list of qutip.qobj.Qobj
list of collapse operators.

a_op : qutip.qobj.Qobj
operator A.

b_op : qutip.qobj.Qobj
operator B.

c_op : qutip.qobj.Qobj
operator C.

solver : str
choice of solver (me for master-equation, mc for Monte Carlo, and es for exponen-
tial series)

options : qutip.solver.Options
solver options class. ntraj is taken as a two-element list because the mc correla-
tor calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps prevents
divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns corr_vec: array
An array of correlation values for the times specified by taulist

181

References

See, Gardiner, Quantum Noise, Section 5.2.
correlation_3op_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op, solver=’me’, args=None, op-

tions=<qutip.solver.Options instance at 0x105963950>)

Calculate the three-operator two-time correlation function: ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡)⟩ along two time
axes using the quantum regression theorem and the evolution solver indicated by the solver pa-
rameter.
Note: it is not possibly to calculate a physically meaningful correlation of this form where :math:
tau<0.

Parameters H : qutip.qobj.Qobj
system Hamiltonian, or a callback function for time-dependent Hamiltonians.

rho0 [qutip.qobj.Qobj] Initial state density matrix 𝜌0 or state vector 𝜓0. If
‘state0’ is ‘None’, then the steady state will be used as the initial state. The
‘steady-state’ is only implemented for the me and es solvers.

tlist [list / array] list of times for 𝑡. tlist must be positive and contain the element
0. When taking steady-steady correlations only one tlist value is necessary, i.e.
:math:‘t

ightarrow infty‘; here tlist is
automatically set, ignoring user input.

taulist [list / array] list of times for 𝜏 . taulist must be positive and contain the
element 0.

c_ops [list of qutip.qobj.Qobj] list of collapse operators. (does not accept
time dependence)

a_op [qutip.qobj.Qobj] operator A.
b_op [qutip.qobj.Qobj] operator B.
c_op [qutip.qobj.Qobj] operator C.
solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es

for exponential series)
options [qutip.solver.Options] solver options class. ntraj is taken as a

two-element list because the mc correlator calls mcsolve() recursively; by de-
fault, ntraj=[20, 100]. mc_corr_eps prevents divide-by-zero errors in the mc
correlator; by default, mc_corr_eps=1e-10.

Returns corr_mat: array
An 2-dimensional array (matrix) of correlation values for the times specified by
tlist (first index) and taulist (second index). If tlist is None, then a 1-dimensional
array of correlation values is returned instead.

correlation_4op_1t(H, state0, taulist, c_ops, a_op, b_op, c_op, d_op, solver=’me’, args=None,
options=<qutip.solver.Options instance at 0x105963ab8>)

Calculate the four-operator two-time correlation function: ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡+ 𝜏)𝐷(𝑡)⟩ along one time
axis using the quantum regression theorem and the evolution solver indicated by the solver parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where 𝜏 < 0.

Parameters H : qutip.qobj.Qobj
system Hamiltonian.

rho0 : qutip.qobj.Qobj
Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’, then the
steady state will be used as the initial state. The ‘steady-state’ is only implemented
for the me and es solvers.

taulist : list / array
list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops : list of qutip.qobj.Qobj
list of collapse operators.

182

a_op : qutip.qobj.Qobj
operator A.

b_op : qutip.qobj.Qobj
operator B.

c_op : qutip.qobj.Qobj
operator C.

d_op : qutip.qobj.Qobj
operator D.

solver : str
choice of solver (me for master-equation, mc for Monte Carlo, and es for exponen-
tial series)

options : qutip.solver.Options
solver options class. ntraj is taken as a two-element list because the mc correla-
tor calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps prevents
divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns corr_vec: array
An array of correlation values for the times specified by taulist

References

See, Gardiner, Quantum Noise, Section 5.2.
correlation_4op_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op, d_op, solver=’me’,

args=None, options=<qutip.solver.Options instance at 0x105963b00>)

Calculate the four-operator two-time correlation function: ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡+ 𝜏)𝐷(𝑡)⟩ along
two time axes using the quantum regression theorem and the evolution solver indicated by the
solver parameter.
Note: it is not possibly to calculate a physically meaningful correlation of this form where 𝜏 < 0.

Parameters H : qutip.qobj.Qobj
system Hamiltonian, or a callback function for time-dependent Hamiltonians.

rho0 [qutip.qobj.Qobj] Initial state density matrix 𝜌0 or state vector 𝜓0. If
‘state0’ is ‘None’, then the steady state will be used as the initial state. The
‘steady-state’ is only implemented for the me and es solvers.

tlist [list / array] list of times for 𝑡. tlist must be positive and contain the element
0. When taking steady-steady correlations only one tlist value is necessary, i.e.
:math:‘t

ightarrow infty‘; here tlist is
automatically set, ignoring user input.

taulist [list / array] list of times for 𝜏 . taulist must be positive and contain the
element 0.

c_ops [list of qutip.qobj.Qobj] list of collapse operators. (does not accept
time dependence)

a_op [qutip.qobj.Qobj] operator A.
b_op [qutip.qobj.Qobj] operator B.
c_op [qutip.qobj.Qobj] operator C.
d_op [qutip.qobj.Qobj] operator D.
solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es

for exponential series)
options [qutip.solver.Options] solver options class. ntraj is taken as a

two-element list because the mc correlator calls mcsolve() recursively; by de-
fault, ntraj=[20, 100]. mc_corr_eps prevents divide-by-zero errors in the mc
correlator; by default, mc_corr_eps=1e-10.

Returns corr_mat: array

183

An 2-dimensional array (matrix) of correlation values for the times specified by
tlist (first index) and taulist (second index). If tlist is None, then a 1-dimensional
array of correlation values is returned instead.

spectrum(H, wlist, c_ops, a_op, b_op, solver=’es’, use_pinv=False)
Calculate the spectrum of the correlation function lim𝑡𝑜∞ ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩, i.e., the Fourier transform of the
correlation function:

𝑆(𝜔) =

∫︁ ∞

−∞
lim
𝑡𝑜∞

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ 𝑒−𝑖𝜔𝜏𝑑𝜏.

using the solver indicated by the solver parameter. Note: this spectrum is only defined for stationary statis-
tics (uses steady state rho0)

Parameters H : qutip.qobj
system Hamiltonian.

wlist : list / array
list of frequencies for 𝜔.

c_ops : list of qutip.qobj
list of collapse operators.

a_op : qutip.qobj
operator A.

b_op : qutip.qobj
operator B.

solver : str
choice of solver (es for exponential series and pi for psuedo-inverse)

use_pinv : bool
For use with the pi solver: if True use numpy’s pinv method, otherwise use a generic
solver

Returns spectrum: array
An array with spectrum 𝑆(𝜔) for the frequencies specified in wlist.

spectrum_ss(H, wlist, c_ops, a_op, b_op)
Calculate the spectrum of the correlation function lim𝑡𝑜∞ ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩, i.e., the Fourier transform of the
correlation function:

𝑆(𝜔) =

∫︁ ∞

−∞
lim
𝑡𝑜∞

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ 𝑒−𝑖𝜔𝜏𝑑𝜏.

using an eseries based solver Note: this spectrum is only defined for stationary statistics (uses steady state
rho0).

Parameters H : qutip.qobj
system Hamiltonian.

wlist : list / array
list of frequencies for 𝜔.

c_ops : list of qutip.qobj
list of collapse operators.

a_op : qutip.qobj
operator A.

b_op : qutip.qobj
operator B.

use_pinv : bool
If True use numpy’s pinv method, otherwise use a generic solver

Returns spectrum: array
An array with spectrum 𝑆(𝜔) for the frequencies specified in wlist.

184

spectrum_pi(H, wlist, c_ops, a_op, b_op, use_pinv=False)
Calculate the spectrum of the correlation function lim𝑡𝑜∞ ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩, i.e., the Fourier transform of the
correlation function:

𝑆(𝜔) =

∫︁ ∞

−∞
lim
𝑡𝑜∞

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ 𝑒−𝑖𝜔𝜏𝑑𝜏.

using a psuedo-inverse method. Note: this spectrum is only defined for stationary statistics (uses steady
state rho0)

Parameters H : qutip.qobj
system Hamiltonian.

wlist : list / array
list of frequencies for 𝜔.

c_ops : list of qutip.qobj
list of collapse operators.

a_op : qutip.qobj
operator A.

b_op : qutip.qobj
operator B.

use_pinv : bool
If True use numpy’s pinv method, otherwise use a generic solver

Returns spectrum: array
An array with spectrum 𝑆(𝜔) for the frequencies specified in wlist.

spectrum_correlation_fft(taulist, y)
Calculate the power spectrum corresponding to a two-time correlation function using FFT.

Parameters tlist : list / array
list/array of times 𝑡 which the correlation function is given.

y : list / array
list/array of correlations corresponding to time delays 𝑡.

Returns w, S : tuple
Returns an array of angular frequencies ‘w’ and the corresponding one-sided power
spectrum ‘S(w)’.

coherence_function_g1(H, taulist, c_ops, a_op, solver=’me’, args=None, op-
tions=<qutip.solver.Options instance at 0x105963998>)

Calculate the normalized first-order quantum coherence function:

𝑔(1)(𝜏) = lim
𝑡𝑜∞

⟨𝑎†(𝑡+ 𝜏)𝑎(𝑡)⟩
⟨𝑎†(𝑡)𝑎(𝑡)⟩

using the quantum regression theorem and the evolution solver indicated by the solver parameter. Note: g1
is only defined for stationary statistics (uses steady state).

Parameters H : qutip.qobj.Qobj
system Hamiltonian.

taulist : list / array
list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops : list of qutip.qobj.Qobj
list of collapse operators.

a_op : qutip.qobj.Qobj
The annihilation operator of the mode.

solver : str
choice of solver (me for master-equation and es for exponential series)

options : qutip.solver.Options

185

solver options class. ntraj is taken as a two-element list because the mc correla-
tor calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps prevents
divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns g1: array
The normalized first-order coherence function.

coherence_function_g2(H, taulist, c_ops, a_op, solver=’me’, args=None, op-
tions=<qutip.solver.Options instance at 0x1059639e0>)

Calculate the normalized second-order quantum coherence function:

𝑔(2)(𝜏) = lim
𝑡𝑜∞

⟨𝑎†(𝑡)𝑎†(𝑡+ 𝜏)𝑎(𝑡+ 𝜏)𝑎(𝑡)⟩
⟨𝑎†(𝑡)𝑎(𝑡)⟩2

using the quantum regression theorem and the evolution solver indicated by the solver parameter. Note: g2
is only defined for stationary statistics (uses steady state rho0).

Parameters H : qutip.qobj.Qobj
system Hamiltonian.

taulist : list / array
list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops : list of qutip.qobj.Qobj
list of collapse operators.

a_op : qutip.qobj.Qobj
The annihilation operator of the mode.

solver : str
choice of solver (me for master-equation and es for exponential series)

options : qutip.solver.Options
solver options class. ntraj is taken as a two-element list because the mc correla-
tor calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps prevents
divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns g2: array
The normalized second-order coherence function.

Steady-state Solvers

Module contains functions for solving for the steady state density matrix of open quantum systems defined by a
Liouvillian or Hamiltonian and a list of collapse operators.
steadystate(A, c_op_list=[], **kwargs)

Calculates the steady state for quantum evolution subject to the supplied Hamiltonian or Liouvillian operator
and (if given a Hamiltonian) a list of collapse operators.

If the user passes a Hamiltonian then it, along with the list of collapse operators, will be converted into a
Liouvillian operator in Lindblad form.

Parameters A : qobj
A Hamiltonian or Liouvillian operator.

c_op_list : list
A list of collapse operators.

method : str {‘direct’, ‘eigen’, ‘iterative-gmres’,
‘iterative-lgmres’, ‘iterative-bicgstab’, ‘svd’, ‘power’}

Method for solving the underlying linear equation. Direct LU solver ‘direct’
(default), sparse eigenvalue problem ‘eigen’, iterative GMRES method ‘iterative-
gmres’, iterative LGMRES method ‘iterative-lgmres’, iterative BICGSTAB method
‘iterative-bicgstab’,

SVD ‘svd’ (dense), or inverse-power method ‘power’.
return_info : bool, optional, default = False

Return a dictionary of solver-specific infomation about the solution and how it was
obtained.

186

sparse : bool, optional, default = True
Solve for the steady state using sparse algorithms. If set to False, the underlying
Liouvillian operator will be converted into a dense matrix. Use only for ‘smaller’
systems.

use_rcm : bool, optional, default = False
Use reverse Cuthill-Mckee reordering to minimize fill-in in the LU factorization of
the Liouvillian.

use_wbm : bool, optional, default = False
Use Weighted Bipartite Matching reordering to make the Liouvillian diagonally
dominant. This is useful for iterative preconditioners only, and is set to True by
default when finding a preconditioner.

weight : float, optional
Sets the size of the elements used for adding the unity trace condition to the lin-
ear solvers. This is set to the average abs value of the Liouvillian elements if not
specified by the user.

use_umfpack : bool {False, True}
Use umfpack solver instead of SuperLU. For SciPy 0.14+, this option requires in-
stalling scikits.umfpack.

x0 : ndarray, optional
ITERATIVE ONLY. Initial guess for solution vector.

maxiter : int, optional, default=1000
ITERATIVE ONLY. Maximum number of iterations to perform.

tol : float, optional, default=1e-9
ITERATIVE ONLY. Tolerance used for terminating solver.

permc_spec : str, optional, default=’COLAMD’
ITERATIVE ONLY. Column ordering used internally by superLU for the ‘direct’
LU decomposition method. Options include ‘COLAMD’ and ‘NATURAL’. If using
RCM then this is set to ‘NATURAL’ automatically unless explicitly specified.

use_precond : bool optional, default = False
ITERATIVE ONLY. Use an incomplete sparse LU decomposition as a precondi-
tioner for the ‘iterative’ GMRES and BICG solvers. Speeds up convergence time
by orders of magnitude in many cases.

M : {sparse matrix, dense matrix, LinearOperator}, optional
ITERATIVE ONLY. Preconditioner for A. The preconditioner should approximate
the inverse of A. Effective preconditioning can dramatically improve the rate of con-
vergence for iterative methods. If no preconditioner is given and use_precond
= True, then one is generated automatically.

fill_factor : float, optional, default = 100
ITERATIVE ONLY. Specifies the fill ratio upper bound (>=1) of the iLU precon-
ditioner. Lower values save memory at the cost of longer execution times and a
possible singular factorization.

drop_tol : float, optional, default = 1e-4
ITERATIVE ONLY. Sets the threshold for the magnitude of preconditioner ele-
ments that should be dropped. Can be reduced for a courser factorization at the cost
of an increased number of iterations, and a possible singular factorization.

diag_pivot_thresh : float, optional, default = None
ITERATIVE ONLY. Sets the threshold between [0,1] for which diagonal elements
are considered acceptable pivot points when using a preconditioner. A value of zero
forces the pivot to be the diagonal element.

ILU_MILU : str, optional, default = ‘smilu_2’
ITERATIVE ONLY. Selects the incomplete LU decomposition method algoithm
used in creating the preconditoner. Should only be used by advanced users.

Returns dm : qobj
Steady state density matrix.

187

info : dict, optional
Dictionary containing solver-specific information about the solution.

Notes

The SVD method works only for dense operators (i.e. small systems).
build_preconditioner(A, c_op_list=[], **kwargs)

Constructs a iLU preconditioner necessary for solving for the steady state density matrix using the iterative
linear solvers in the ‘steadystate’ function.

Parameters A : qobj
A Hamiltonian or Liouvillian operator.

c_op_list : list
A list of collapse operators.

return_info : bool, optional, default = False
Return a dictionary of solver-specific infomation about the solution and how it was
obtained.

use_rcm : bool, optional, default = False
Use reverse Cuthill-Mckee reordering to minimize fill-in in the LU factorization of
the Liouvillian.

use_wbm : bool, optional, default = False
Use Weighted Bipartite Matching reordering to make the Liouvillian diagonally
dominant. This is useful for iterative preconditioners only, and is set to True by
default when finding a preconditioner.

weight : float, optional
Sets the size of the elements used for adding the unity trace condition to the lin-
ear solvers. This is set to the average abs value of the Liouvillian elements if not
specified by the user.

permc_spec : str, optional, default=’COLAMD’
Column ordering used internally by superLU for the ‘direct’ LU decomposition
method. Options include ‘COLAMD’ and ‘NATURAL’. If using RCM then this is
set to ‘NATURAL’ automatically unless explicitly specified.

fill_factor : float, optional, default = 100
Specifies the fill ratio upper bound (>=1) of the iLU preconditioner. Lower values
save memory at the cost of longer execution times and a possible singular factor-
ization.

drop_tol : float, optional, default = 1e-4
Sets the threshold for the magnitude of preconditioner elements that should be
dropped. Can be reduced for a courser factorization at the cost of an increased
number of iterations, and a possible singular factorization.

diag_pivot_thresh : float, optional, default = None
Sets the threshold between [0,1] for which diagonal elements are considered ac-
ceptable pivot points when using a preconditioner. A value of zero forces the pivot
to be the diagonal element.

ILU_MILU : str, optional, default = ‘smilu_2’
Selects the incomplete LU decomposition method algoithm used in creating the
preconditoner. Should only be used by advanced users.

Returns lu : object
Returns a SuperLU object representing iLU preconditioner.

info : dict, optional
Dictionary containing solver-specific information.

188

Propagators

propagator(H, t, c_op_list, args=None, options=None, sparse=False, progress_bar=None)
Calculate the propagator U(t) for the density matrix or wave function such that 𝜓(𝑡) = 𝑈(𝑡)𝜓(0) or
𝜌v𝑒𝑐(𝑡) = 𝑈(𝑡)𝜌v𝑒𝑐(0) where 𝜌v𝑒𝑐 is the vector representation of the density matrix.

Parameters H : qobj or list
Hamiltonian as a Qobj instance of a nested list of Qobjs and coefficients in the list-
string or list-function format for time-dependent Hamiltonians (see description in
qutip.mesolve).

t : float or array-like
Time or list of times for which to evaluate the propagator.

c_op_list : list
List of qobj collapse operators.

args : list/array/dictionary
Parameters to callback functions for time-dependent Hamiltonians and collapse op-
erators.

options : qutip.Options
with options for the ODE solver.

progress_bar: BaseProgressBar
Optional instance of BaseProgressBar, or a subclass thereof, for showing the
progress of the simulation. By default no progress bar is used, and if set to True a
TextProgressBar will be used.

Returns a : qobj
Instance representing the propagator 𝑈(𝑡).

propagator_steadystate(U)
Find the steady state for successive applications of the propagator 𝑈 .

Parameters U : qobj
Operator representing the propagator.

Returns a : qobj
Instance representing the steady-state density matrix.

Time-dependent problems

rhs_generate(H, c_ops, args={}, options=<qutip.solver.Options instance at 0x10569e200>,
name=None, cleanup=True)

Generates the Cython functions needed for solving the dynamics of a given system using the mesolve
function inside a parfor loop.

Parameters H : qobj
System Hamiltonian.

c_ops : list
list of collapse operators.

args : dict
Arguments for time-dependent Hamiltonian and collapse operator terms.

options : Options
Instance of ODE solver options.

name: str
Name of generated RHS

cleanup: bool
Whether the generated cython file should be automatically removed or not.

189

Notes

Using this function with any solver other than the mesolve function will result in an error.
rhs_clear()

Resets the string-format time-dependent Hamiltonian parameters.

Returns Nothing, just clears data from internal config module.

Visualization

Pseudoprobability Functions

qfunc(state, xvec, yvec, g=1.4142135623730951)
Q-function of a given state vector or density matrix at points xvec + i * yvec.

Parameters state : qobj
A state vector or density matrix.

xvec : array_like
x-coordinates at which to calculate the Wigner function.

yvec : array_like
y-coordinates at which to calculate the Wigner function.

g : float
Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2).

Returns Q : array
Values representing the Q-function calculated over the specified range [xvec,yvec].

wigner(psi, xvec, yvec, method=’iterative’, g=1.4142135623730951, parfor=False)
Wigner function for a state vector or density matrix at points xvec + i * yvec.

Parameters state : qobj
A state vector or density matrix.

xvec : array_like
x-coordinates at which to calculate the Wigner function.

yvec : array_like
y-coordinates at which to calculate the Wigner function. Does not apply to the ‘fft’
method.

g : float
Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2).

method : string {‘iterative’, ‘laguerre’, ‘fft’}
Select method ‘iterative’, ‘laguerre’, or ‘fft’, where ‘iterative’ uses an iterative
method to evaluate the Wigner functions for density matrices |𝑚 >< 𝑛|, while ‘la-
guerre’ uses the Laguerre polynomials in scipy for the same task. The ‘fft’ method
evaluates the Fourier transform of the density matrix. The ‘iterative’ method is de-
fault, and in general recommended, but the ‘laguerre’ method is more efficient for
very sparse density matrices (e.g., superpositions of Fock states in a large Hilbert
space). The ‘fft’ method is the preferred method for dealing with density matrices
that have a large number of excitations (>~50).

parfor : bool {False, True}
Flag for calculating the Laguerre polynomial based Wigner function
method=’laguerre’ in parallel using the parfor function.

Returns W : array
Values representing the Wigner function calculated over the specified range
[xvec,yvec].

yvex : array
FFT ONLY. Returns the y-coordinate values calculated via the Fourier transform.

190

Notes

The ‘fft’ method accepts only an xvec input for the x-coordinate. The y-coordinates are calculated internally.

References

Ulf Leonhardt, Measuring the Quantum State of Light, (Cambridge University Press, 1997)

Graphs and Visualization

Functions for visualizing results of quantum dynamics simulations, visualizations of quantum states and processes.

hinton(rho, xlabels=None, ylabels=None, title=None, ax=None, cmap=None, label_top=True)
Draws a Hinton diagram for visualizing a density matrix or superoperator.

Parameters rho : qobj
Input density matrix or superoperator.

xlabels : list of strings or False
list of x labels

ylabels : list of strings or False
list of y labels

title : string
title of the plot (optional)

ax : a matplotlib axes instance
The axes context in which the plot will be drawn.

cmap : a matplotlib colormap instance
Color map to use when plotting.

label_top : bool
If True, x-axis labels will be placed on top, otherwise they will appear below the
plot.

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises ValueError
Input argument is not a quantum object.

matrix_histogram(M, xlabels=None, ylabels=None, title=None, limits=None, colorbar=True,
fig=None, ax=None)

Draw a histogram for the matrix M, with the given x and y labels and title.

Parameters M : Matrix of Qobj
The matrix to visualize

xlabels : list of strings
list of x labels

ylabels : list of strings
list of y labels

title : string
title of the plot (optional)

limits : list/array with two float numbers
The z-axis limits [min, max] (optional)

ax : a matplotlib axes instance
The axes context in which the plot will be drawn.

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises ValueError

191

Input argument is not valid.

matrix_histogram_complex(M, xlabels=None, ylabels=None, title=None, limits=None,
phase_limits=None, colorbar=True, fig=None, ax=None, thresh-
old=None)

Draw a histogram for the amplitudes of matrix M, using the argument of each element for coloring the bars,
with the given x and y labels and title.

Parameters M : Matrix of Qobj
The matrix to visualize

xlabels : list of strings
list of x labels

ylabels : list of strings
list of y labels

title : string
title of the plot (optional)

limits : list/array with two float numbers
The z-axis limits [min, max] (optional)

phase_limits : list/array with two float numbers
The phase-axis (colorbar) limits [min, max] (optional)

ax : a matplotlib axes instance
The axes context in which the plot will be drawn.

threshold: float (None)
Threshold for when bars of smaller height should be transparent. If not set, all bars
are colored according to the color map.

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises ValueError
Input argument is not valid.

plot_energy_levels(H_list, N=0, labels=None, show_ylabels=False, figsize=(8, 12), fig=None,
ax=None)

Plot the energy level diagrams for a list of Hamiltonians. Include up to N energy levels. For each element
in H_list, the energy levels diagram for the cummulative Hamiltonian sum(H_list[0:n]) is plotted, where n
is the index of an element in H_list.

Parameters H_list : List of Qobj
A list of Hamiltonians.

labels [List of string] A list of labels for each Hamiltonian
show_ylabels [Bool (default False)] Show y labels to the left of energy levels of

the initial Hamiltonian.
N [int] The number of energy levels to plot
figsize [tuple (int,int)] The size of the figure (width, height).
fig [a matplotlib Figure instance] The Figure canvas in which the plot will be

drawn.
ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises ValueError
Input argument is not valid.

plot_fock_distribution(rho, offset=0, fig=None, ax=None, figsize=(8, 6), title=None,
unit_y_range=True)

Plot the Fock distribution for a density matrix (or ket) that describes an oscillator mode.

Parameters rho : qutip.qobj.Qobj

192

The density matrix (or ket) of the state to visualize.
fig : a matplotlib Figure instance

The Figure canvas in which the plot will be drawn.
ax : a matplotlib axes instance

The axes context in which the plot will be drawn.
title : string

An optional title for the figure.
figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no ‘fig’
and ‘ax’ arguments are passed).

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_wigner_fock_distribution(rho, fig=None, axes=None, figsize=(8, 4), cmap=None, al-
pha_max=7.5, colorbar=False, method=’iterative’, projec-
tion=‘2d’)

Plot the Fock distribution and the Wigner function for a density matrix (or ket) that describes an oscillator
mode.

Parameters rho : qutip.qobj.Qobj
The density matrix (or ket) of the state to visualize.

fig : a matplotlib Figure instance
The Figure canvas in which the plot will be drawn.

axes : a list of two matplotlib axes instances
The axes context in which the plot will be drawn.

figsize : (width, height)
The size of the matplotlib figure (in inches) if it is to be created (that is, if no ‘fig’
and ‘ax’ arguments are passed).

cmap : a matplotlib cmap instance
The colormap.

alpha_max : float
The span of the x and y coordinates (both [-alpha_max, alpha_max]).

colorbar : bool
Whether (True) or not (False) a colorbar should be attached to the Wigner function
graph.

method : string {‘iterative’, ‘laguerre’, ‘fft’}
The method used for calculating the wigner function. See the documentation for
qutip.wigner for details.

projection: string {‘2d’, ‘3d’}
Specify whether the Wigner function is to be plotted as a contour graph (‘2d’) or
surface plot (‘3d’).

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_wigner(rho, fig=None, ax=None, figsize=(8, 4), cmap=None, alpha_max=7.5, colorbar=False,
method=’iterative’, projection=‘2d’)

Plot the the Wigner function for a density matrix (or ket) that describes an oscillator mode.

Parameters rho : qutip.qobj.Qobj
The density matrix (or ket) of the state to visualize.

fig : a matplotlib Figure instance
The Figure canvas in which the plot will be drawn.

ax : a matplotlib axes instance
The axes context in which the plot will be drawn.

figsize : (width, height)

193

The size of the matplotlib figure (in inches) if it is to be created (that is, if no ‘fig’
and ‘ax’ arguments are passed).

cmap : a matplotlib cmap instance
The colormap.

alpha_max : float
The span of the x and y coordinates (both [-alpha_max, alpha_max]).

colorbar : bool
Whether (True) or not (False) a colorbar should be attached to the Wigner function
graph.

method : string {‘iterative’, ‘laguerre’, ‘fft’}
The method used for calculating the wigner function. See the documentation for
qutip.wigner for details.

projection: string {‘2d’, ‘3d’}
Specify whether the Wigner function is to be plotted as a contour graph (‘2d’) or
surface plot (‘3d’).

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

sphereplot(theta, phi, values, fig=None, ax=None, save=False)
Plots a matrix of values on a sphere

Parameters theta : float
Angle with respect to z-axis

phi : float
Angle in x-y plane

values : array
Data set to be plotted

fig : a matplotlib Figure instance
The Figure canvas in which the plot will be drawn.

ax : a matplotlib axes instance
The axes context in which the plot will be drawn.

save : bool {False , True}
Whether to save the figure or not

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_schmidt(ket, splitting=None, labels_iteration=(3, 2), theme=’light’, fig=None, ax=None, fig-
size=(6, 6))

Plotting scheme related to Schmidt decomposition. Converts a state into a matrix (A_ij -> A_i^j), where
rows are first particles and columns - last.

See also: plot_qubism with how=’before_after’ for a similar plot.

Parameters ket : Qobj
Pure state for plotting.

splitting : int
Plot for a number of first particles versus the rest. If not given, it is (number of
particles + 1) // 2.

theme : ‘light’ (default) or ‘dark’
Set coloring theme for mapping complex values into colors. See: com-
plex_array_to_rgb.

labels_iteration : int or pair of ints (default (3,2))
Number of particles to be shown as tick labels, for first (vertical) and last (horizon-
tal) particles, respectively.

fig : a matplotlib figure instance

194

The figure canvas on which the plot will be drawn.
ax : a matplotlib axis instance

The axis context in which the plot will be drawn.
figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no ‘fig’
and ‘ax’ arguments are passed).

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_qubism(ket, theme=’light’, how=’pairs’, grid_iteration=1, legend_iteration=0, fig=None,
ax=None, figsize=(6, 6))

Qubism plot for pure states of many qudits. Works best for spin chains, especially with even number of
particles of the same dimension. Allows to see entanglement between first 2*k particles and the rest.

More information: J. Rodriguez-Laguna, P. Migdal, M. Ibanez Berganza, M. Lewenstein, G. Sierra,
“Qubism: self-similar visualization of many-body wavefunctions”, New J. Phys. 14 053028 (2012),
arXiv:1112.3560, http://dx.doi.org/10.1088/1367-2630/14/5/053028 (open access)

Parameters ket : Qobj
Pure state for plotting.

theme : ‘light’ (default) or ‘dark’
Set coloring theme for mapping complex values into colors. See: com-
plex_array_to_rgb.

how : ‘pairs’ (default), ‘pairs_skewed’ or ‘before_after’
Type of Qubism plotting. Options:

‘pairs’ - typical coordinates, ‘pairs_skewed’ - for ferromag-
netic/antriferromagnetic plots, ‘before_after’ - related to Schmidt plot
(see also: plot_schmidt).

grid_iteration : int (default 1)
Helper lines to be drawn on plot. Show tiles for 2*grid_iteration particles vs all
others.

legend_iteration : int (default 0) or ‘grid_iteration’ or ‘all’
Show labels for first 2*legend_iteration particles. Option ‘grid_iteration’ sets the
same number of particles

as for grid_iteration.
Option ‘all’ makes label for all particles. Typically it should be 0, 1, 2 or perhaps 3.

fig : a matplotlib figure instance
The figure canvas on which the plot will be drawn.

ax : a matplotlib axis instance
The axis context in which the plot will be drawn.

figsize : (width, height)
The size of the matplotlib figure (in inches) if it is to be created (that is, if no ‘fig’
and ‘ax’ arguments are passed).

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_expectation_values(results, ylabels=[], title=None, show_legend=False, fig=None,
axes=None, figsize=(8, 4))

Visualize the results (expectation values) for an evolution solver. results is assumed to be an instance of
Result, or a list of Result instances.

Parameters results : (list of) qutip.solver.Result
List of results objects returned by any of the QuTiP evolution solvers.

ylabels : list of strings
The y-axis labels. List should be of the same length as results.

title : string

195

The title of the figure.
show_legend : bool

Whether or not to show the legend.
fig : a matplotlib Figure instance

The Figure canvas in which the plot will be drawn.
axes : a matplotlib axes instance

The axes context in which the plot will be drawn.
figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no ‘fig’
and ‘ax’ arguments are passed).

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_spin_distribution_2d(P, THETA, PHI, fig=None, ax=None, figsize=(8, 8))
Plot a spin distribution function (given as meshgrid data) with a 2D projection where the surface of the unit
sphere is mapped on the unit disk.

Parameters P : matrix
Distribution values as a meshgrid matrix.

THETA : matrix
Meshgrid matrix for the theta coordinate.

PHI : matrix
Meshgrid matrix for the phi coordinate.

fig : a matplotlib figure instance
The figure canvas on which the plot will be drawn.

ax : a matplotlib axis instance
The axis context in which the plot will be drawn.

figsize : (width, height)
The size of the matplotlib figure (in inches) if it is to be created (that is, if no ‘fig’
and ‘ax’ arguments are passed).

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_spin_distribution_3d(P, THETA, PHI, fig=None, ax=None, figsize=(8, 6))
Plots a matrix of values on a sphere

Parameters P : matrix
Distribution values as a meshgrid matrix.

THETA : matrix
Meshgrid matrix for the theta coordinate.

PHI : matrix
Meshgrid matrix for the phi coordinate.

fig : a matplotlib figure instance
The figure canvas on which the plot will be drawn.

ax : a matplotlib axis instance
The axis context in which the plot will be drawn.

figsize : (width, height)
The size of the matplotlib figure (in inches) if it is to be created (that is, if no ‘fig’
and ‘ax’ arguments are passed).

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

196

orbital(theta, phi, *args)
Calculates an angular wave function on a sphere. psi = orbital(theta,phi,ket1,ket2,...)
calculates the angular wave function on a sphere at the mesh of points defined by theta and phi which is∑︀

𝑙𝑚 𝑐𝑙𝑚𝑌𝑙𝑚(𝑡ℎ𝑒𝑡𝑎, 𝑝ℎ𝑖) where 𝐶𝑙𝑚 are the coefficients specified by the list of kets. Each ket has 2l+1
components for some integer l.

Parameters theta : list/array
Polar angles

phi : list/array
Azimuthal angles

args : list/array
list of ket vectors.

Returns array for angular wave function

Quantum Process Tomography

qpt(U, op_basis_list)
Calculate the quantum process tomography chi matrix for a given (possibly nonunitary) transformation
matrix U, which transforms a density matrix in vector form according to:

vec(rho) = U * vec(rho0)
or
rho = vec2mat(U * mat2vec(rho0))

U can be calculated for an open quantum system using the QuTiP propagator function.

Parameters U : Qobj
Transformation operator. Can be calculated using QuTiP propagator function.

op_basis_list : list
A list of Qobj’s representing the basis states.

Returns chi : array
QPT chi matrix

qpt_plot(chi, lbls_list, title=None, fig=None, axes=None)
Visualize the quantum process tomography chi matrix. Plot the real and imaginary parts separately.

Parameters chi : array
Input QPT chi matrix.

lbls_list : list
List of labels for QPT plot axes.

title : string
Plot title.

fig : figure instance
User defined figure instance used for generating QPT plot.

axes : list of figure axis instance
User defined figure axis instance (list of two axes) used for generating QPT plot.

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

qpt_plot_combined(chi, lbls_list, title=None, fig=None, ax=None, figsize=(8, 6), threshold=None)
Visualize the quantum process tomography chi matrix. Plot bars with height and color corresponding to the
absolute value and phase, respectively.

Parameters chi : array
Input QPT chi matrix.

lbls_list : list
List of labels for QPT plot axes.

197

title : string
Plot title.

fig : figure instance
User defined figure instance used for generating QPT plot.

ax : figure axis instance
User defined figure axis instance used for generating QPT plot (alternative to the
fig argument).

threshold: float (None)
Threshold for when bars of smaller height should be transparent. If not set, all bars
are colored according to the color map.

Returns fig, ax : tuple
A tuple of the matplotlib figure and axes instances used to produce the figure.

Quantum Information Processing

Gates

rx(phi, N=None, target=0)
Single-qubit rotation for operator sigmax with angle phi.

Returns result : qobj
Quantum object for operator describing the rotation.

ry(phi, N=None, target=0)
Single-qubit rotation for operator sigmay with angle phi.

Returns result : qobj
Quantum object for operator describing the rotation.

rz(phi, N=None, target=0)
Single-qubit rotation for operator sigmaz with angle phi.

Returns result : qobj
Quantum object for operator describing the rotation.

sqrtnot(N=None, target=0)
Single-qubit square root NOT gate.

Returns result : qobj
Quantum object for operator describing the square root NOT gate.

snot(N=None, target=0)
Quantum object representing the SNOT (Hadamard) gate.

Returns snot_gate : qobj
Quantum object representation of SNOT gate.

Examples

>>> snot()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[0.70710678+0.j 0.70710678+0.j]
[0.70710678+0.j -0.70710678+0.j]]

phasegate(theta, N=None, target=0)
Returns quantum object representing the phase shift gate.

Parameters theta : float
Phase rotation angle.

Returns phase_gate : qobj
Quantum object representation of phase shift gate.

198

Examples

>>> phasegate(pi/4)
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[1.00000000+0.j 0.00000000+0.j]
[0.00000000+0.j 0.70710678+0.70710678j]]

cphase(theta, N=2, control=0, target=1)
Returns quantum object representing the phase shift gate.

Parameters theta : float
Phase rotation angle.

N : integer
The number of qubits in the target space.

control : integer
The index of the control qubit.

target : integer
The index of the target qubit.

Returns U : qobj
Quantum object representation of controlled phase gate.

cnot(N=None, control=0, target=1)
Quantum object representing the CNOT gate.

Returns cnot_gate : qobj
Quantum object representation of CNOT gate

Examples

>>> cnot()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =

[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[0.+0.j 0.+0.j 1.+0.j 0.+0.j]]

csign(N=None, control=0, target=1)
Quantum object representing the CSIGN gate.

Returns csign_gate : qobj
Quantum object representation of CSIGN gate

Examples

>>> csign()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =

[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j -1.+0.j]]

berkeley(N=None, targets=[0, 1])
Quantum object representing the Berkeley gate.

Returns berkeley_gate : qobj
Quantum object representation of Berkeley gate

199

Examples

>>> berkeley()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =

[[cos(pi/8).+0.j 0.+0.j 0.+0.j 0.+sin(pi/8).j]
[0.+0.j cos(3pi/8).+0.j 0.+sin(3pi/8).j 0.+0.j]
[0.+0.j 0.+sin(3pi/8).j cos(3pi/8).+0.j 0.+0.j]
[0.+sin(pi/8).j 0.+0.j 0.+0.j cos(pi/8).+0.j]]

swapalpha(alpha, N=None, targets=[0, 1])
Quantum object representing the SWAPalpha gate.

Returns swapalpha_gate : qobj
Quantum object representation of SWAPalpha gate

Examples

>>> swapalpha(alpha)
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.5*(1 + exp(j*pi*alpha) 0.5*(1 - exp(j*pi*alpha) 0.+0.j]
[0.+0.j 0.5*(1 - exp(j*pi*alpha) 0.5*(1 + exp(j*pi*alpha) 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

swap(N=None, targets=[0, 1])
Quantum object representing the SWAP gate.

Returns swap_gate : qobj
Quantum object representation of SWAP gate

Examples

>>> swap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

iswap(N=None, targets=[0, 1])
Quantum object representing the iSWAP gate.

Returns iswap_gate : qobj
Quantum object representation of iSWAP gate

Examples

>>> iswap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+1.j 0.+0.j]
[0.+0.j 0.+1.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

200

sqrtswap(N=None, targets=[0, 1])
Quantum object representing the square root SWAP gate.

Returns sqrtswap_gate : qobj
Quantum object representation of square root SWAP gate

sqrtiswap(N=None, targets=[0, 1])
Quantum object representing the square root iSWAP gate.

Returns sqrtiswap_gate : qobj
Quantum object representation of square root iSWAP gate

Examples

>>> sqrtiswap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[1.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
[0.00000000+0.j 0.70710678+0.j 0.00000000-0.70710678j 0.00000000+0.j]
[0.00000000+0.j 0.00000000-0.70710678j 0.70710678+0.j 0.00000000+0.j]
[0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 1.00000000+0.j]]

fredkin(N=None, control=0, targets=[1, 2])
Quantum object representing the Fredkin gate.

Returns fredkin_gate : qobj
Quantum object representation of Fredkin gate.

Examples

>>> fredkin()
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = [8, 8], type = oper, isHerm = True
Qobj data =

[[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

toffoli(N=None, controls=[0, 1], target=2)
Quantum object representing the Toffoli gate.

Returns toff_gate : qobj
Quantum object representation of Toffoli gate.

Examples

>>> toffoli()
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = [8, 8], type = oper, isHerm = True
Qobj data =

[[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j]

201

[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]]

rotation(op, phi, N=None, target=0)
Single-qubit rotation for operator op with angle phi.

Returns result : qobj
Quantum object for operator describing the rotation.

controlled_gate(U, N=2, control=0, target=1, control_value=1)
Create an N-qubit controlled gate from a single-qubit gate U with the given control and target qubits.

Parameters U : Qobj
Arbitrary single-qubit gate.

N : integer
The number of qubits in the target space.

control : integer
The index of the first control qubit.

target : integer
The index of the target qubit.

control_value : integer (1)
The state of the control qubit that activates the gate U.

Returns result : qobj
Quantum object representing the controlled-U gate.

globalphase(theta, N=1)
Returns quantum object representing the global phase shift gate.

Parameters theta : float
Phase rotation angle.

Returns phase_gate : qobj
Quantum object representation of global phase shift gate.

Examples

>>> phasegate(pi/4)
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[0.70710678+0.70710678j 0.00000000+0.j]
[0.00000000+0.j 0.70710678+0.70710678j]]

hadamard_transform(N=1)
Quantum object representing the N-qubit Hadamard gate.

Returns q : qobj
Quantum object representation of the N-qubit Hadamard gate.

gate_sequence_product(U_list, left_to_right=True)
Calculate the overall unitary matrix for a given list of unitary operations

Parameters U_list : list
List of gates implementing the quantum circuit.

left_to_right: Boolean
Check if multiplication is to be done from left to right.

Returns U_overall: qobj
Overall unitary matrix of a given quantum circuit.

202

gate_expand_1toN(U, N, target)
Create a Qobj representing a one-qubit gate that act on a system with N qubits.

Parameters U : Qobj
The one-qubit gate

N : integer
The number of qubits in the target space.

target : integer
The index of the target qubit.

Returns gate : qobj
Quantum object representation of N-qubit gate.

gate_expand_2toN(U, N, control=None, target=None, targets=None)
Create a Qobj representing a two-qubit gate that act on a system with N qubits.

Parameters U : Qobj
The two-qubit gate

N : integer
The number of qubits in the target space.

control : integer
The index of the control qubit.

target : integer
The index of the target qubit.

targets : list
List of target qubits.

Returns gate : qobj
Quantum object representation of N-qubit gate.

gate_expand_3toN(U, N, controls=[0, 1], target=2)
Create a Qobj representing a three-qubit gate that act on a system with N qubits.

Parameters U : Qobj
The three-qubit gate

N : integer
The number of qubits in the target space.

controls : list
The list of the control qubits.

target : integer
The index of the target qubit.

Returns gate : qobj
Quantum object representation of N-qubit gate.

Qubits

qubit_states(N=1, states=[0])
Function to define initial state of the qubits.

Parameters N: Integer
Number of qubits in the register.

states: List
Initial state of each qubit.

Returns qstates: Qobj
List of qubits.

203

Algorithms

qft(N=1)
Quantum Fourier Transform operator on N qubits.

Parameters N : int
Number of qubits.

Returns QFT: qobj
Quantum Fourier transform operator.

qft_steps(N=1, swapping=True)
Quantum Fourier Transform operator on N qubits returning the individual steps as unitary matrices operating
from left to right.

Parameters N: int
Number of qubits.

swap: boolean
Flag indicating sequence of swap gates to be applied at the end or not.

Returns U_step_list: list of qobj
List of Hadamard and controlled rotation gates implementing QFT.

qft_gate_sequence(N=1, swapping=True)
Quantum Fourier Transform operator on N qubits returning the gate sequence.

Parameters N: int
Number of qubits.

swap: boolean
Flag indicating sequence of swap gates to be applied at the end or not.

Returns qc: instance of QubitCircuit
Gate sequence of Hadamard and controlled rotation gates implementing QFT.

Optimal control

This module contains functions that implement the GRAPE algorithm for calculating pulse sequences for quantum
systems.
plot_grape_control_fields(times, u, labels, uniform_axes=False)

Plot a series of plots showing the GRAPE control fields given in the given control pulse matrix u.

Parameters times : array
Time coordinate array.

u : array
Control pulse matrix.

labels : list
List of labels for each control pulse sequence in the control pulse matrix.

uniform_axes : bool
Whether or not to plot all pulse sequences using the same y-axis scale.

grape_unitary(U, H0, H_ops, R, times, eps=None, u_start=None, u_limits=None,
interp_kind=’linear’, use_interp=False, alpha=None, beta=None,
phase_sensitive=True, progress_bar=<qutip.ui.progressbar.BaseProgressBar object
at 0x107b6fd90>)

Calculate control pulses for the Hamiltonian operators in H_ops so that the unitary U is realized.

Experimental: Work in progress.

Parameters U : Qobj
Target unitary evolution operator.

H0 : Qobj
Static Hamiltonian (that cannot be tuned by the control fields).

204

H_ops: list of Qobj
A list of operators that can be tuned in the Hamiltonian via the control fields.

R : int
Number of GRAPE iterations.

time : array / list
Array of time coordinates for control pulse evalutation.

u_start : array
Optional array with initial control pulse values.

Returns Instance of GRAPEResult, which contains the control pulses calculated
with GRAPE, a time-dependent Hamiltonian that is defined by the control pulses,
as well as the resulting propagator.

grape_unitary_adaptive(U, H0, H_ops, R, times, eps=None, u_start=None, u_limits=None,
interp_kind=’linear’, use_interp=False, alpha=None,
beta=None, phase_sensitive=False, overlap_terminate=1.0,
progress_bar=<qutip.ui.progressbar.BaseProgressBar object at
0x107be58d0>)

Calculate control pulses for the Hamiltonian operators in H_ops so that the unitary U is realized.

Experimental: Work in progress.

Parameters U : Qobj
Target unitary evolution operator.

H0 : Qobj
Static Hamiltonian (that cannot be tuned by the control fields).

H_ops: list of Qobj
A list of operators that can be tuned in the Hamiltonian via the control fields.

R : int
Number of GRAPE iterations.

time : array / list
Array of time coordinates for control pulse evalutation.

u_start : array
Optional array with initial control pulse values.

Returns Instance of GRAPEResult, which contains the control pulses calculated
with GRAPE, a time-dependent Hamiltonian that is defined by the control pulses,
as well as the resulting propagator.

Wrapper functions that will manage the creation of the objects, build the configuration, and execute the algo-
rithm required to optimise a set of ctrl pulses for a given (quantum) system. The fidelity error is some measure
of distance of the system evolution from the given target evolution in the time allowed for the evolution. The
functions minimise this fidelity error wrt the piecewise control amplitudes in the timeslots
optimize_pulse(drift, ctrls, initial, target, num_tslots=None, evo_time=None, tau=None,

amp_lbound=-inf, amp_ubound=inf, fid_err_targ=1e-10, min_grad=1e-10,
max_iter=500, max_wall_time=180, optim_alg=’LBFGSB’, max_metric_corr=10,
accuracy_factor=10000000.0, dyn_type=’GEN_MAT’, prop_type=’DEF’,
fid_type=’DEF’, phase_option=None, fid_err_scale_factor=None,
amp_update_mode=’ALL’, init_pulse_type=’RND’, pulse_scaling=1.0,
pulse_offset=0.0, log_level=0, out_file_ext=None, gen_stats=False)

Optimise a control pulse to minimise the fidelity error. The dynamics of the system in any given timeslot
are governed by the combined dynamics generator, i.e. the sum of the drift+ctrl_amp[j]*ctrls[j] The control
pulse is an [n_ts, len(ctrls)] array of piecewise amplitudes Starting from an intital (typically random) pulse,
a multivariable optimisation algorithm attempts to determines the optimal values for the control pulse to
minimise the fidelity error The fidelity error is some measure of distance of the system evolution from the
given target evolution in the time allowed for the evolution.

Parameters drift : Qobj
the underlying dynamics generator of the system

205

ctrls : List of Qobj
a list of control dynamics generators. These are scaled by the amplitudes to alter
the overall dynamics

initial : Qobj
starting point for the evolution. Typically the identity matrix

target : Qobj
target transformation, e.g. gate or state, for the time evolution

num_tslots : integer or None
number of timeslots. None implies that timeslots will be given in the tau array

evo_time : float or None
total time for the evolution None implies that timeslots will be given in the tau array

tau : array[num_tslots] of floats or None
durations for the timeslots. if this is given then num_tslots and evo_time are der-
vived from it None implies that timeslot durations will be equal and calculated as
evo_time/num_tslots

amp_lbound : float or list of floats
lower boundaries for the control amplitudes Can be a scalar value applied to all
controls or a list of bounds for each control

amp_ubound : float or list of floats
upper boundaries for the control amplitudes Can be a scalar value applied to all
controls or a list of bounds for each control

fid_err_targ : float
Fidelity error target. Pulse optimisation will terminate when the fidelity error falls
below this value

mim_grad : float
Minimum gradient. When the sum of the squares of the gradients wrt to the con-
trol amplitudes falls below this value, the optimisation terminates, assuming local
minima

max_iter : integer
Maximum number of iterations of the optimisation algorithm

max_wall_time : float
Maximum allowed elapsed time for the optimisation algorithm

optim_alg : string
Multi-variable optimisation algorithm options are BFGS, LBFGSB (see Optimizer
classes for details)

max_metric_corr : integer
The maximum number of variable metric corrections used to define the limited
memory matrix. That is the number of previous gradient values that are used to
approximate the Hessian see the scipy.optimize.fmin_l_bfgs_b documentation for
description of m argument (used only in L-BFGS-B)

accuracy_factor : float
Determines the accuracy of the result. Typical values for accuracy_factor are: 1e12
for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy
scipy.optimize.fmin_l_bfgs_b factr argument. (used only in L-BFGS-B)

dyn_type : string
Dynamics type, i.e. the type of matrix used to describe the dynamics. Options are
UNIT, GEN_MAT, SYMPL (see Dynamics classes for details)

prop_type : string
Propagator type i.e. the method used to calculate the propagtors and propagtor gra-
dient for each timeslot options are DEF, APPROX, DIAG, FRECHET, AUG_MAT
DEF will use the default for the specific dyn_type (see PropagatorComputer classes
for details)

fid_type : string

206

Fidelity error (and fidelity error gradient) computation method Options are DEF,
UNIT, TRACEDIFF, TD_APPROX DEF will use the default for the specific
dyn_type (See FideliyComputer classes for details)

phase_option : string
determines how global phase is treated in fidelity calculations (fid_type=’UNIT’
only). Options:

PSU - global phase ignored SU - global phase included
fid_err_scale_factor : float

(used in TRACEDIFF FidelityComputer and subclasses only) The fidelity error cal-
culated is of some arbitary scale. This factor can be used to scale the fidelity error
such that it may represent some physical measure If None is given then it is cacu-
lated as 1/2N, where N is the dimension of the drift.

amp_update_mode : string
determines whether propagators are calculated Options: DEF, ALL, DYNAMIC
(needs work) DEF will use the default for the specific dyn_type (See Timeslot-
Computer classes for details)

init_pulse_type : string
type / shape of pulse(s) used to initialise the the control amplitudes. Options in-
clude:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW
(see PulseGen classes for details)

pulse_scaling : float
Linear scale factor for generated pulses By default initial pulses are generated with
amplitudes in the range (-1.0, 1.0). These will be scaled by this parameter

pulse_offset : float
Line offset for the pulse. That is this value will be added to any initial pulses
generated.

log_level : integer
level of messaging output from the logger. Options are attributes of qutip.logging,
in decreasing levels of messaging, are: DEBUG_INTENSE, DEBUG_VERBOSE,
DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or above is effec-
tively ‘quiet’ execution, assuming everything runs as expected. The default NOT-
SET implies that the level will be taken from the QuTiP settings file, which by
default is WARN

out_file_ext : string or None
files containing the initial and final control pulse amplitudes are saved to the current
directory. The default name will be postfixed with this extension Setting this to
None will suppress the output of files

gen_stats : boolean
if set to True then statistics for the optimisation run will be generated - accessible
through attributes of the stats object

Returns Returns instance of OptimResult, which has attributes giving the
reason for termination, final fidelity error, final evolution final amplitudes, statistics
etc

optimize_pulse_unitary(H_d, H_c, U_0, U_targ, num_tslots=None, evo_time=None,
tau=None, amp_lbound=-inf, amp_ubound=inf, fid_err_targ=1e-
10, min_grad=1e-10, max_iter=500, max_wall_time=180,
optim_alg=’LBFGSB’, max_metric_corr=10, ac-
curacy_factor=10000000.0, phase_option=’PSU’,
amp_update_mode=’ALL’, init_pulse_type=’RND’, pulse_scaling=1.0,
pulse_offset=0.0, log_level=0, out_file_ext=’.txt’, gen_stats=False)

Optimise a control pulse to minimise the fidelity error, assuming that the dynamics of the system are gen-
erated by unitary operators. This function is simply a wrapper for optimize_pulse, where the appropriate
options for unitary dynamics are chosen and the parameter names are in the format familiar to unitary dy-
namics The dynamics of the system in any given timeslot are governed by the combined Hamiltonian, i.e.

207

the sum of the H_d + ctrl_amp[j]*H_c[j] The control pulse is an [n_ts, len(ctrls)] array of piecewise ampli-
tudes Starting from an intital (typically random) pulse, a multivariable optimisation algorithm attempts to
determines the optimal values for the control pulse to minimise the fidelity error The maximum fidelity for
a unitary system is 1, i.e. when the time evolution resulting from the pulse is equivalent to the target. And
therefore the fidelity error is 1 - fidelity

Parameters H_d : Qobj
Drift (aka system) the underlying Hamiltonian of the system

H_c : Qobj
a list of control Hamiltonians. These are scaled by the amplitudes to alter the overall
dynamics

U_0 : Qobj
starting point for the evolution. Typically the identity matrix

U_targ : Qobj
target transformation, e.g. gate or state, for the time evolution

num_tslots : integer or None
number of timeslots. None implies that timeslots will be given in the tau array

evo_time : float or None
total time for the evolution None implies that timeslots will be given in the tau array

tau : array[num_tslots] of floats or None
durations for the timeslots. if this is given then num_tslots and evo_time are der-
vived from it None implies that timeslot durations will be equal and calculated as
evo_time/num_tslots

amp_lbound : float or list of floats
lower boundaries for the control amplitudes Can be a scalar value applied to all
controls or a list of bounds for each control

amp_ubound : float or list of floats
upper boundaries for the control amplitudes Can be a scalar value applied to all
controls or a list of bounds for each control

fid_err_targ : float
Fidelity error target. Pulse optimisation will terminate when the fidelity error falls
below this value

mim_grad : float
Minimum gradient. When the sum of the squares of the gradients wrt to the con-
trol amplitudes falls below this value, the optimisation terminates, assuming local
minima

max_iter : integer
Maximum number of iterations of the optimisation algorithm

max_wall_time : float
Maximum allowed elapsed time for the optimisation algorithm

optim_alg : string
Multi-variable optimisation algorithm options are BFGS, LBFGSB (see Optimizer
classes for details)

max_metric_corr : integer
The maximum number of variable metric corrections used to define the limited
memory matrix. That is the number of previous gradient values that are used to
approximate the Hessian see the scipy.optimize.fmin_l_bfgs_b documentation for
description of m argument (used only in L-BFGS-B)

accuracy_factor : float
Determines the accuracy of the result. Typical values for accuracy_factor are: 1e12
for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy
scipy.optimize.fmin_l_bfgs_b factr argument. (used only in L-BFGS-B)

phase_option : string

208

determines how global phase is treated in fidelity calculations (fid_type=’UNIT’
only). Options:

PSU - global phase ignored SU - global phase included
amp_update_mode : string

determines whether propagators are calculated Options: DEF, ALL, DYNAMIC
(needs work) DEF will use the default for the specific dyn_type (See Timeslot-
Computer classes for details)

init_pulse_type : string
type / shape of pulse(s) used to initialise the the control amplitudes. Options in-
clude:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW
(see PulseGen classes for details)

pulse_scaling : float
Linear scale factor for generated pulses By default initial pulses are generated with
amplitudes in the range (-1.0, 1.0). These will be scaled by this parameter

pulse_offset : float
Line offset for the pulse. That is this value will be added to any initial pulses
generated.

log_level : integer
level of messaging output from the logger. Options are attributes of qutip.logging,
in decreasing levels of messaging, are: DEBUG_INTENSE, DEBUG_VERBOSE,
DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or above is effec-
tively ‘quiet’ execution, assuming everything runs as expected. The default NOT-
SET implies that the level will be taken from the QuTiP settings file, which by
default is WARN

out_file_ext : string or None
files containing the initial and final control pulse amplitudes are saved to the current
directory. The default name will be postfixed with this extension Setting this to
None will suppress the output of files

gen_stats : boolean
if set to True then statistics for the optimisation run will be generated - accessible
through attributes of the stats object

Returns Returns instance of OptimResult, which has attributes giving the
reason for termination, final fidelity error, final evolution final amplitudes, statistics
etc

create_pulse_optimizer(drift, ctrls, initial, target, num_tslots=None, evo_time=None,
tau=None, amp_lbound=-inf, amp_ubound=inf, fid_err_targ=1e-
10, min_grad=1e-10, max_iter=500, max_wall_time=180,
optim_alg=’LBFGSB’, max_metric_corr=10, accu-
racy_factor=10000000.0, dyn_type=’GEN_MAT’, prop_type=’DEF’,
fid_type=’DEF’, phase_option=None, fid_err_scale_factor=None,
amp_update_mode=’ALL’, init_pulse_type=’RND’, pulse_scaling=1.0,
pulse_offset=0.0, log_level=0, gen_stats=False)

Generate the objects of the appropriate subclasses required for the pulse optmisation based on the param-
eters given Note this method may be preferable to calling optimize_pulse if more detailed configuration is
required before running the optmisation algorthim, or the algorithm will be run many times, for instances
when trying to finding global the optimum or minimum time optimisation

Parameters drift : Qobj
the underlying dynamics generator of the system

ctrls : List of Qobj
a list of control dynamics generators. These are scaled by the amplitudes to alter
the overall dynamics

initial : Qobj

209

starting point for the evolution. Typically the identity matrix
target : Qobj

target transformation, e.g. gate or state, for the time evolution
num_tslots : integer or None

number of timeslots. None implies that timeslots will be given in the tau array
evo_time : float or None

total time for the evolution None implies that timeslots will be given in the tau array
tau : array[num_tslots] of floats or None

durations for the timeslots. if this is given then num_tslots and evo_time are der-
vived from it None implies that timeslot durations will be equal and calculated as
evo_time/num_tslots

amp_lbound : float or list of floats
lower boundaries for the control amplitudes Can be a scalar value applied to all
controls or a list of bounds for each control

amp_ubound : float or list of floats
upper boundaries for the control amplitudes Can be a scalar value applied to all
controls or a list of bounds for each control

fid_err_targ : float
Fidelity error target. Pulse optimisation will terminate when the fidelity error falls
below this value

mim_grad : float
Minimum gradient. When the sum of the squares of the gradients wrt to the con-
trol amplitudes falls below this value, the optimisation terminates, assuming local
minima

max_iter : integer
Maximum number of iterations of the optimisation algorithm

max_wall_time : float
Maximum allowed elapsed time for the optimisation algorithm

optim_alg : string
Multi-variable optimisation algorithm options are BFGS, LBFGSB (see Optimizer
classes for details)

max_metric_corr : integer
The maximum number of variable metric corrections used to define the limited
memory matrix. That is the number of previous gradient values that are used to
approximate the Hessian see the scipy.optimize.fmin_l_bfgs_b documentation for
description of m argument (used only in L-BFGS-B)

accuracy_factor : float
Determines the accuracy of the result. Typical values for accuracy_factor are: 1e12
for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy
scipy.optimize.fmin_l_bfgs_b factr argument. (used only in L-BFGS-B)

dyn_type : string
Dynamics type, i.e. the type of matrix used to describe the dynamics. Options are
UNIT, GEN_MAT, SYMPL (see Dynamics classes for details)

prop_type : string
Propagator type i.e. the method used to calculate the propagtors and propagtor gra-
dient for each timeslot options are DEF, APPROX, DIAG, FRECHET, AUG_MAT
DEF will use the default for the specific dyn_type (see PropagatorComputer classes
for details)

fid_type : string
Fidelity error (and fidelity error gradient) computation method Options are DEF,
UNIT, TRACEDIFF, TD_APPROX DEF will use the default for the specific
dyn_type (See FideliyComputer classes for details)

phase_option : string

210

determines how global phase is treated in fidelity calculations (fid_type=’UNIT’
only). Options:

PSU - global phase ignored SU - global phase included
fid_err_scale_factor : float

(used in TRACEDIFF FidelityComputer and subclasses only) The fidelity error cal-
culated is of some arbitary scale. This factor can be used to scale the fidelity error
such that it may represent some physical measure If None is given then it is cacu-
lated as 1/2N, where N is the dimension of the drift.

amp_update_mode : string
determines whether propagators are calculated Options: DEF, ALL, DYNAMIC
(needs work) DEF will use the default for the specific dyn_type (See Timeslot-
Computer classes for details)

init_pulse_type : string
type / shape of pulse(s) used to initialise the the control amplitudes. Options in-
clude:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW
(see PulseGen classes for details)

pulse_scaling : float
Linear scale factor for generated pulses By default initial pulses are generated with
amplitudes in the range (-1.0, 1.0). These will be scaled by this parameter

pulse_offset : float
Line offset for the pulse. That is this value will be added to any initial pulses
generated.

log_level : integer
level of messaging output from the logger. Options are attributes of qutip.logging,
in decreasing levels of messaging, are: DEBUG_INTENSE, DEBUG_VERBOSE,
DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or above is effec-
tively ‘quiet’ execution, assuming everything runs as expected. The default NOT-
SET implies that the level will be taken from the QuTiP settings file, which by
default is WARN Note value should be set using set_log_level

gen_stats : boolean
if set to True then statistics for the optimisation run will be generated - accessible
through attributes of the stats object

Returns Instance of an Optimizer, through which the
Config, Dynamics, PulseGen, and TerminationConditions objects can be accessed
as attributes. The PropagatorComputer, FidelityComputer and TimeslotComputer
objects can be accessed as attributes of the Dynamics object, e.g.

optimizer.dynamics.fid_computer
The optimisation can be run through the optimizer.run_optimization

Pulse generator - Generate pulses for the timeslots Each class defines a gen_pulse function that produces a
float array of size num_tslots. Each class produces a differ type of pulse. See the class and gen_pulse function
descriptions for details
create_pulse_gen(pulse_type=’RND’, dyn=None)

Create and return a pulse generator object matching the given type. The pulse generators each produce
a different type of pulse, see the gen_pulse function description for details. These are the random pulse
options:

RND - Independent random value in each timeslot RNDFOURIER - Fourier series with random
coefficients RNDWAVES - Summation of random waves RNDWALK1 - Random change in
amplitude each timeslot RNDWALK2 - Random change in amp gradient each timeslot

These are the other non-periodic options: LIN - Linear, i.e. contant gradient over the time ZERO - spe-
cial case of the LIN pulse, where the gradient is 0

These are the periodic options SINE - Sine wave SQUARE - Square wave SAW - Saw tooth wave TRI-
ANGLE - Triangular wave

211

If a Dynamics object is passed in then this is used in instantiate the PulseGen, meaning that some timeslot
and amplitude properties are copied over.

Pulse generator - Generate pulses for the timeslots Each class defines a gen_pulse function that produces a
float array of size num_tslots. Each class produces a differ type of pulse. See the class and gen_pulse function
descriptions for details

Utilitiy Functions

Graph Theory Routines

This module contains a collection of graph theory routines used mainly to reorder matrices for iterative steady
state solvers.
breadth_first_search(A, start)

Breadth-First-Search (BFS) of a graph in CSR or CSC matrix format starting from a given node (row).
Takes Qobjs and CSR or CSC matrices as inputs.

This function requires a matrix with symmetric structure. Use A+trans(A) if original matrix is not symmetric
or not sure.

Parameters A : csc_matrix, csr_matrix
Input graph in CSC or CSR matrix format

start : int
Staring node for BFS traversal.

Returns order : array
Order in which nodes are traversed from starting node.

levels : array
Level of the nodes in the order that they are traversed.

graph_degree(A)
Returns the degree for the nodes (rows) of a symmetric graph in sparse CSR or CSC format, or a qobj.

Parameters A : qobj, csr_matrix, csc_matrix
Input quantum object or csr_matrix.

Returns degree : array
Array of integers giving the degree for each node (row).

reverse_cuthill_mckee(A, sym=False)
Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.
Since the input matrix must be symmetric, this routine works on the matrix A+Trans(A) if the sym flag is
set to False (Default).

It is assumed by default (sym=False) that the input matrix is not symmetric. This is because it is faster to
do A+Trans(A) than it is to check for symmetry for a generic matrix. If you are guaranteed that the matrix
is symmetric in structure (values of matrix element do not matter) then set sym=True

Parameters A : csc_matrix, csr_matrix
Input sparse CSC or CSR sparse matrix format.

sym : bool {False, True}
Flag to set whether input matrix is symmetric.

Returns perm : array
Array of permuted row and column indices.

Notes

This routine is used primarily for internal reordering of Lindblad superoperators for use in iterative solver
routines.

212

References

E. Cuthill and J. McKee, “Reducing the Bandwidth of Sparse Symmetric Matrices”, ACM ‘69 Proceedings
of the 1969 24th national conference, (1969).

maximum_bipartite_matching(A, perm_type=’row’)
Returns an array of row or column permutations that removes nonzero elements from the diagonal of a
nonsingular square CSC sparse matrix. Such a permutation is always possible provided that the matrix is
nonsingular. This function looks at the structure of the matrix only.

The input matrix will be converted to CSC matrix format if necessary.

Parameters A : sparse matrix
Input matrix

perm_type : str {‘row’, ‘column’}
Type of permutation to generate.

Returns perm : array
Array of row or column permutations.

Notes

This function relies on a maximum cardinality bipartite matching algorithm based on a breadth-first search
(BFS) of the underlying graph[R3]_.

References

Analysis of Maximum Transversal Algorithms”, ACM Trans. Math. Softw. 38, no. 2, (2011).

[R3]
weighted_bipartite_matching(A, perm_type=’row’)

Returns an array of row permutations that attempts to maximize the product of the ABS values of the diag-
onal elements in a nonsingular square CSC sparse matrix. Such a permutation is always possible provided
that the matrix is nonsingular.

This function looks at both the structure and ABS values of the underlying matrix.

Parameters A : csc_matrix
Input matrix

perm_type : str {‘row’, ‘column’}
Type of permutation to generate.

Returns perm : array
Array of row or column permutations.

Notes

This function uses a weighted maximum cardinality bipartite matching algorithm based on breadth-first
search (BFS). The columns are weighted according to the element of max ABS value in the associated rows
and are traversed in descending order by weight. When performing the BFS traversal, the row associated
to a given column is the one with maximum weight. Unlike other techniques[R4]_, this algorithm does not
guarantee the product of the diagonal is maximized. However, this limitation is offset by the substantially
faster runtime of this method.

References

permuting large entries to the diagonal of sparse matrices”, SIAM J. Matrix Anal. and Applics. 20, no. 4,
889 (1997).

[R4]

213

Utility Functions

This module contains utility functions that are commonly needed in other qutip modules.
n_thermal(w, w_th)

Return the number of photons in thermal equilibrium for an harmonic oscillator mode with frequency ‘w’,
at the temperature described by ‘w_th’ where 𝜔th = 𝑘𝐵𝑇/ℎ̄.

Parameters w : float or array
Frequency of the oscillator.

w_th : float
The temperature in units of frequency (or the same units as w).

Returns n_avg : float or array
Return the number of average photons in thermal equilibrium for a an oscillator
with the given frequency and temperature.

linspace_with(start, stop, num=50, elems=[])
Return an array of numbers sampled over specified interval with additional elements added.

Returns num spaced array with elements from elems inserted if not already included in set.

Returned sample array is not evenly spaced if addtional elements are added.

Parameters start : int
The starting value of the sequence.

stop : int
The stoping values of the sequence.

num : int, optional
Number of samples to generate.

elems : list/ndarray, optional
Requested elements to include in array

Returns samples : ndadrray
Original equally spaced sample array with additional elements added.

clebsch(j1, j2, j3, m1, m2, m3)
Calculates the Clebsch-Gordon coefficient for coupling (j1,m1) and (j2,m2) to give (j3,m3).

Parameters j1 : float
Total angular momentum 1.

j2 : float
Total angular momentum 2.

j3 : float
Total angular momentum 3.

m1 : float
z-component of angular momentum 1.

m2 : float
z-component of angular momentum 2.

m3 : float
z-component of angular momentum 3.

Returns cg_coeff : float
Requested Clebsch-Gordan coefficient.

convert_unit(value, orig=’meV’, to=’GHz’)
Convert an energy from unit orig to unit to.

Parameters value : float / array
The energy in the old unit.

orig : string
The name of the original unit (“J”, “eV”, “meV”, “GHz”, “mK”)

214

to : string
The name of the new unit (“J”, “eV”, “meV”, “GHz”, “mK”)

Returns value_new_unit : float / array
The energy in the new unit.

File I/O Functions

file_data_read(filename, sep=None)
Retrieves an array of data from the requested file.

Parameters filename : str
Name of file containing reqested data.

sep : str
Seperator used to store data.

Returns data : array_like
Data from selected file.

file_data_store(filename, data, numtype=’complex’, numformat=’decimal’, sep=’, ‘)
Stores a matrix of data to a file to be read by an external program.

Parameters filename : str
Name of data file to be stored, including extension.

data: array_like
Data to be written to file.

numtype : str {‘complex, ‘real’}
Type of numerical data.

numformat : str {‘decimal’,’exp’}
Format for written data.

sep : str
Single-character field seperator. Usually a tab, space, comma, or semicolon.

qload(name)
Loads data file from file named ‘filename.qu’ in current directory.

Parameters name : str
Name of data file to be loaded.

Returns qobject : instance / array_like
Object retrieved from requested file.

qsave(data, name=’qutip_data’)
Saves given data to file named ‘filename.qu’ in current directory.

Parameters data : instance/array_like
Input Python object to be stored.

filename : str
Name of output data file.

Parallelization

This function provides functions for parallel execution of loops and function mappings, using the builtin Python
module multiprocessing.
parfor(func, *args, **kwargs)

Executes a multi-variable function in parallel on the local machine.

Parallel execution of a for-loop over function func for multiple input arguments and keyword arguments.

Note: From QuTiP 3.1.0, we recommend to use qutip.parallel_map instead of this function.

215

Parameters func : function_type
A function to run in parallel on the local machine. The function ‘func’ accepts
a series of arguments that are passed to the function as variables. In general, the
function can have multiple input variables, and these arguments must be passed in
the same order as they are defined in the function definition. In addition, the user
can pass multiple keyword arguments to the function.

The following keyword argument is reserved:
num_cpus : int

Number of CPU’s to use. Default uses maximum number of CPU’s. Performance
degrades if num_cpus is larger than the physical CPU count of your machine.

Returns result : list
A list with length equal to number of input parameters containing the output
from func.

parallel_map(task, values, task_args=(), task_kwargs={}, **kwargs)
Parallel execution of a mapping of values to the function task. This is functionally equivalent to:

result = [task(value, *task_args, **task_kwargs) for value in values]

Parameters task: a Python function
The function that is to be called for each value in task_vec.

values: array / list
The list or array of values for which the task function is to be evaluated.

task_args: list / dictionary
The optional additional argument to the task function.

task_kwargs: list / dictionary
The optional additional keyword argument to the task function.

progress_bar: ProgressBar
Progress bar class instance for showing progress.

Returns result : list
The result list contains the value of task(value, *task_args,

**task_kwargs) for each value in values.

serial_map(task, values, task_args=(), task_kwargs={}, **kwargs)
Serial mapping function with the same call signature as parallel_map, for easy switching between serial and
parallel execution. This is functionally equivalent to:

result = [task(value, *task_args, **task_kwargs) for value in values]

This function work as a drop-in replacement of qutip.parallel_map.

Parameters task: a Python function
The function that is to be called for each value in task_vec.

values: array / list
The list or array of values for which the task function is to be evaluated.

task_args: list / dictionary
The optional additional argument to the task function.

task_kwargs: list / dictionary
The optional additional keyword argument to the task function.

progress_bar: ProgressBar
Progress bar class instance for showing progress.

Returns result : list
The result list contains the value of task(value, *task_args,

**task_kwargs) for each value in values.

216

IPython Notebook Tools

This module contains utility functions for using QuTiP with IPython notebooks.
parfor(task, task_vec, args=None, client=None, view=None, show_scheduling=False,

show_progressbar=False)
Call the function tast for each value in task_vec using a cluster of IPython engines. The function
task should have the signature task(value, args) or task(value) if args=None.

The client and view are the IPython.parallel client and load-balanced view that will be used in the parfor
execution. If these are None, new instances will be created.

Parameters task: a Python function
The function that is to be called for each value in task_vec.

task_vec: array / list
The list or array of values for which the task function is to be evaluated.

args: list / dictionary
The optional additional argument to the task function. For example a dictionary
with parameter values.

client: IPython.parallel.Client
The IPython.parallel Client instance that will be used in the parfor execution.

view: a IPython.parallel.Client view
The view that is to be used in scheduling the tasks on the IPython cluster. Preferably
a load-balanced view, which is obtained from the IPython.parallel.Client instance
client by calling, view = client.load_balanced_view().

show_scheduling: bool {False, True}, default False
Display a graph showing how the tasks (the evaluation of task for for the value in
task_vec1) was scheduled on the IPython engine cluster.

show_progressbar: bool {False, True}, default False
Display a HTML-based progress bar duing the execution of the parfor loop.

Returns result : list
The result list contains the value of task(value, args) for each value in
task_vec, that is, it should be equivalent to [task(v, args) for v in
task_vec].

parallel_map(task, values, task_args=None, task_kwargs=None, client=None, view=None,
progress_bar=None, show_scheduling=False, **kwargs)

Call the function task for each value in values using a cluster of IPython engines. The function task
should have the signature task(value, *args, **kwargs).

The client and view are the IPython.parallel client and load-balanced view that will be used in the parfor
execution. If these are None, new instances will be created.

Parameters task: a Python function
The function that is to be called for each value in task_vec.

values: array / list
The list or array of values for which the task function is to be evaluated.

task_args: list / dictionary
The optional additional argument to the task function.

task_kwargs: list / dictionary
The optional additional keyword argument to the task function.

client: IPython.parallel.Client
The IPython.parallel Client instance that will be used in the parfor execution.

view: a IPython.parallel.Client view
The view that is to be used in scheduling the tasks on the IPython cluster. Preferably
a load-balanced view, which is obtained from the IPython.parallel.Client instance
client by calling, view = client.load_balanced_view().

show_scheduling: bool {False, True}, default False

217

Display a graph showing how the tasks (the evaluation of task for for the value in
task_vec1) was scheduled on the IPython engine cluster.

show_progressbar: bool {False, True}, default False
Display a HTML-based progress bar during the execution of the parfor loop.

Returns result : list
The result list contains the value of task(value, task_args,
task_kwargs) for each value in values.

version_table(verbose=False)
Print an HTML-formatted table with version numbers for QuTiP and its dependencies. Use it in a IPython
notebook to show which versions of different packages that were used to run the notebook. This should
make it possible to reproduce the environment and the calculation later on.

Returns version_table: string
Return an HTML-formatted string containing version information for QuTiP de-
pendencies.

Miscellaneous

about()
About box for qutip. Gives version numbers for QuTiP, NumPy, SciPy, Cython, and MatPlotLib.

simdiag(ops, evals=True)
Simulateous diagonalization of communting Hermitian matrices..

Parameters ops : list/array
list or array of qobjs representing commuting Hermitian operators.

Returns eigs : tuple
Tuple of arrays representing eigvecs and eigvals of quantum objects corresponding
to simultaneous eigenvectors and eigenvalues for each operator.

218

CHAPTER
FIVE

CHANGE LOG

5.1 Version 3.1.0 (January 1, 2015):

New Features

• MAJOR FEATURE: New module for quantum control (qutip.control).

• NAMESPACE CHANGE: QuTiP no longer exports symbols from NumPy and matplotlib, so those mod-
ules must now be explicitly imported when required.

• New module for counting statistics.

• Stochastic solvers now run trajectories in parallel.

• New superoperator and tensor manipulation functions (super_tensor, composite, tensor_contract).

• New logging module for debugging (qutip.logging).

• New user-available API for parallelization (parallel_map).

• New enhanced (optional) text-based progressbar (qutip.ui.EnhancedTextProgressBar)

• Faster Python based monte carlo solver (mcsolve).

• Support for progress bars in propagator function.

• Time-dependent Cython code now calls complex cmath functions.

• Random numbers seeds can now be reused for successive calls to mcsolve.

• The Bloch-Redfield master equation solver now supports optional Lindblad type collapse operators.

• Improved handling of ODE integration errors in mesolve.

• Improved correlation function module (for example, improved support for time-dependent problems).

• Improved parallelization of mcsolve (can now be interrupted easily, support for IPython.parallel, etc.)

• Many performance improvements, and much internal code restructuring.

Bug Fixes

• Cython build files for time-dependent string format now removed automatically.

• Fixed incorrect solution time from inverse-power method steady state solver.

• mcsolve now supports Options(store_states=True)

• Fixed bug in hadamard gate function.

• Fixed compatibility issues with NumPy 1.9.0.

• Progressbar in mcsolve can now be suppressed.

• Fixed bug in gate_expand_3toN.

• Fixed bug for time-dependent problem (list string format) with multiple terms in coefficient to an operator.

219

5.2 Version 3.0.1 (Aug 5, 2014):

Bug Fixes

• Fix bug in create(), which returned a Qobj with CSC data instead of CSR.

• Fix several bugs in mcsolve: Incorrect storing of collapse times and collapse operator records. Incorrect
averaging of expectation values for different trajectories when using only 1 CPU.

• Fix bug in parsing of time-dependent Hamiltonian/collapse operator arguments that occurred when the args
argument is not a dictionary.

• Fix bug in internal _version2int function that cause a failure when parsing the version number of the Cython
package.

5.3 Version 3.0.0 (July 17, 2014):

New Features

• New module qutip.stochastic with stochastic master equation and stochastic Schrödinger equation solvers.

• Expanded steady state solvers. The function steady has been deprecated in favor of steadystate.
The steadystate solver no longer use umfpack by default. New pre-processing methods for reordering and
balancing the linear equation system used in direct solution of the steady state.

• New module qutip.qip with utilities for quantum information processing, including pre-defined quantum
gates along with functions for expanding arbitrary 1, 2, and 3 qubit gates to N qubit registers, circuit repre-
sentations, library of quantum algorithms, and basic physical models for some common QIP architectures.

• New module qutip.distributions with unified API for working with distribution functions.

• New format for defining time-dependent Hamiltonians and collapse operators, using a pre-calculated numpy
array that specifies the values of the Qobj-coefficients for each time step.

• New functions for working with different superoperator representations, including Kraus and Chi represen-
tation.

• New functions for visualizing quantum states using Qubism and Schimdt plots: plot_qubism and
plot_schmidt.

• Dynamics solver now support taking argument e_ops (expectation value operators) in dictionary form.

• Public plotting functions from the qutip.visualization module are now prefixed with plot_ (e.g.,
plot_fock_distribution). The plot_wigner and plot_wigner_fock_distribution
now supports 3D views in addition to contour views.

• New API and new functions for working with spin operators and states, including for example spin_Jx,
spin_Jy, spin_Jz and spin_state, spin_coherent.

• The expect function now supports a list of operators, in addition to the previously supported list of states.

• Simplified creation of qubit states using ket function.

• The module qutip.cyQ has been renamed to qutip.cy and the sparse matrix-vector functions spmv
and spmv1d has been combined into one function spmv. New functions for operating directly on the
underlaying sparse CSR data have been added (e.g., spmv_csr). Performance improvements. New and
improved Cython functions for calculating expectation values for state vectors, density matrices in matrix
and vector form.

• The concurrence function now supports both pure and mixed states. Added function for calculating the
entangling power of a two-qubit gate.

• Added function for generating (generalized) Lindblad dissipator superoperators.

• New functions for generating Bell states, and singlet and triplet states.

220

• QuTiP no longer contains the demos GUI. The examples are now available on the QuTiP web site. The
qutip.gui module has been renamed to qutip.ui and does no longer contain graphical UI elements.
New text-based and HTML-based progressbar classes.

• Support for harmonic oscillator operators/states in a Fock state basis that does not start from zero (e.g., in
the range [M,N+1]). Support for eliminating and extracting states from Qobj instances (e.g., removing one
state from a two-qubit system to obtain a three-level system).

• Support for time-dependent Hamiltonian and Liouvillian callback functions that depend on the instanta-
neous state, which for example can be used for solving master equations with mean field terms.

Improvements

• Restructured and optimized implementation of Qobj, which now has significantly lower memory footprint
due to avoiding excessive copying of internal matrix data.

• The classes OdeData, Odeoptions, Odeconfig are now called Result, Options, and Config,
respectively, and are available in the module qutip.solver.

• The squeez function has been renamed to squeeze.

• Better support for sparse matrices when calculating propagators using the propagator function.

• Improved Bloch sphere.

• Restructured and improved the module qutip.sparse, which now only operates directly on sparse ma-
trices (not on Qobj instances).

• Improved and simplified implement of the tensor function.

• Improved performance, major code cleanup (including namespace changes), and numerous bug fixes.

• Benchmark scripts improved and restructured.

• QuTiP is now using continuous integration tests (TravisCI).

5.4 Version 2.2.0 (March 01, 2013):

New Features

• Added Support for Windows

• New Bloch3d class for plotting 3D Bloch spheres using Mayavi.

• Bloch sphere vectors now look like arrows.

• Partial transpose function.

• Continuos variable functions for calculating correlation and covariance matrices, the Wigner covariance
matrix and the logarithmic negativity for for multimode fields in Fock basis.

• The master-equation solver (mesolve) now accepts pre-constructed Liouvillian terms, which makes it pos-
sible to solve master equations that are not on the standard Lindblad form.

• Optional Fortran Monte Carlo solver (mcsolve_f90) by Arne Grimsmo.

• A module of tools for using QuTiP in IPython notebooks.

• Increased performance of the steady state solver.

• New Wigner colormap for highlighting negative values.

• More graph styles to the visualization module.

221

Bug Fixes:

• Function based time-dependent Hamiltonians now keep the correct phase.

• mcsolve no longer prints to the command line if ntraj=1.

5.5 Version 2.1.0 (October 05, 2012):

New Features

• New method for generating Wigner functions based on Laguerre polynomials.

• coherent(), coherent_dm(), and thermal_dm() can now be expressed using analytic values.

• Unittests now use nose and can be run after installation.

• Added iswap and sqrt-iswap gates.

• Functions for quantum process tomography.

• Window icons are now set for Ubuntu application launcher.

• The propagator function can now take a list of times as argument, and returns a list of corresponding prop-
agators.

Bug Fixes:

• mesolver now correctly uses the user defined rhs_filename in Odeoptions().

• rhs_generate() now handles user defined filenames properly.

• Density matrix returned by propagator_steadystate is now Hermitian.

• eseries_value returns real list if all imag parts are zero.

• mcsolver now gives correct results for strong damping rates.

• Odeoptions now prints mc_avg correctly.

• Do not check for PyObj in mcsolve when gui=False.

• Eseries now correctly handles purely complex rates.

• thermal_dm() function now uses truncated operator method.

• Cython based time-dependence now Python 3 compatible.

• Removed call to NSAutoPool on mac systems.

• Progress bar now displays the correct number of CPU’s used.

• Qobj.diag() returns reals if operator is Hermitian.

• Text for progress bar on Linux systems is no longer cutoff.

5.6 Version 2.0.0 (June 01, 2012):

The second version of QuTiP has seen many improvements in the performance of the original code base, as well
as the addition of several new routines supporting a wide range of functionality. Some of the highlights of this
release include:

222

New Features

• QuTiP now includes solvers for both Floquet and Bloch-Redfield master equations.

• The Lindblad master equation and Monte Carlo solvers allow for time-dependent collapse operators.

• It is possible to automatically compile time-dependent problems into c-code using Cython (if installed).

• Python functions can be used to create arbitrary time-dependent Hamiltonians and collapse operators.

• Solvers now return Odedata objects containing all simulation results and parameters, simplifying the saving
of simulation results.

Important: This breaks compatibility with QuTiP version 1.x.

• mesolve and mcsolve can reuse Hamiltonian data when only the initial state, or time-dependent arguments,
need to be changed.

• QuTiP includes functions for creating random quantum states and operators.

• The generation and manipulation of quantum objects is now more efficient.

• Quantum objects have basis transformation and matrix element calculations as built-in methods.

• The quantum object eigensolver can use sparse solvers.

• The partial-trace (ptrace) function is up to 20x faster.

• The Bloch sphere can now be used with the Matplotlib animation function, and embedded as a subplot in a
figure.

• QuTiP has built-in functions for saving quantum objects and data arrays.

• The steady-state solver has been further optimized for sparse matrices, and can handle much larger system
Hamiltonians.

• The steady-state solver can use the iterative bi-conjugate gradient method instead of a direct solver.

• There are three new entropy functions for concurrence, mutual information, and conditional entropy.

• Correlation functions have been combined under a single function.

• The operator norm can now be set to trace, Frobius, one, or max norm.

• Global QuTiP settings can now be modified.

• QuTiP includes a collection of unit tests for verifying the installation.

• Demos window now lets you copy and paste code from each example.

5.7 Version 1.1.4 (May 28, 2012):

Bug Fixes:

• Fixed bug pointed out by Brendan Abolins.

• Qobj.tr() returns zero-dim ndarray instead of float or complex.

• Updated factorial import for scipy version 0.10+

5.8 Version 1.1.3 (November 21, 2011):

New Functions:

• Allow custom naming of Bloch sphere.

223

Bug Fixes:

• Fixed text alignment issues in AboutBox.

• Added fix for SciPy V>0.10 where factorial was moved to scipy.misc module.

• Added tidyup function to tensor function output.

• Removed openmp flags from setup.py as new Mac Xcode compiler does not recognize them.

• Qobj diag method now returns real array if all imaginary parts are zero.

• Examples GUI now links to new documentation.

• Fixed zero-dimensional array output from metrics module.

5.9 Version 1.1.2 (October 27, 2011)

Bug Fixes

• Fixed issue where Monte Carlo states were not output properly.

5.10 Version 1.1.1 (October 25, 2011)

THIS POINT-RELEASE INCLUDES VASTLY IMPROVED TIME-INDEPENDENT MCSOLVE AND
ODESOLVE PERFORMANCE

New Functions

• Added linear entropy function.

• Number of CPU’s can now be changed.

Bug Fixes

• Metrics no longer use dense matrices.

• Fixed Bloch sphere grid issue with matplotlib 1.1.

• Qobj trace operation uses only sparse matrices.

• Fixed issue where GUI windows do not raise to front.

5.11 Version 1.1.0 (October 04, 2011)

THIS RELEASE NOW REQUIRES THE GCC COMPILER TO BE INSTALLED

New Functions

• tidyup function to remove small elements from a Qobj.

• Added concurrence function.

• Added simdiag for simultaneous diagonalization of operators.

• Added eigenstates method returning eigenstates and eigenvalues to Qobj class.

• Added fileio for saving and loading data sets and/or Qobj’s.

• Added hinton function for visualizing density matrices.

224

Bug Fixes

• Switched Examples to new Signals method used in PySide 1.0.6+.

• Switched ProgressBar to new Signals method.

• Fixed memory issue in expm functions.

• Fixed memory bug in isherm.

• Made all Qobj data complex by default.

• Reduced ODE tolerance levels in Odeoptions.

• Fixed bug in ptrace where dense matrix was used instead of sparse.

• Fixed issue where PyQt4 version would not be displayed in about box.

• Fixed issue in Wigner where xvec was used twice (in place of yvec).

5.12 Version 1.0.0 (July 29, 2011)

• Initial release.

225

CHAPTER
SIX

DEVELOPERS

6.1 Lead Developers

Robert Johansson (RIKEN)
Paul Nation (Korea University)

6.2 Contributors

Note: Anyone is welcome to contribute to QuTiP. If you are interested in helping, please let us know!

alexbrc (github user) - Code contributor
Alexander Pitchford (Aberystwyth University) - Code contributor
Amit Jamadagni - Bug fix
Anders Lund (Technical University of Denmark) - Bug hunting for the Monte-Carlo solver
Andre Carvalho - Bug hunter
André Xuereb (University of Hannover) - Bug hunter
Anubhav Vardhan (IIT, Kanpur) - Bug hunter, Code contributor, Documentation
Arne Grimsmo (University of Auckland) - Bug hunter, Code contributor
Ben Criger (Waterloo IQC) - Code contributor
Bredan Abolins (Berkeley) - Bug hunter
Chris Granade - Code contributor
Claudia Degrandi (Yale University) - Documentation
Dawid Crivelli - Bug hunter
Denis Vasilyev (St. Petersburg State University) - Code contributor
Dong Zhou (Yale University) - Bug hunter
Florian Ong (Institute for Quantum Computation) - Bug hunter
Frank Schima - Macports packaging
Henri Nielsen (Technical University of Denmark) - Bug hunter
Hwajung Kang (Systems Biology Institute, Tokyo) - Suggestions for improving Bloch class
James Clemens (Miami University - Ohio) - Bug hunter
Johannes Feist - Code contributor
Jonas Hörsch - Code contributor
Jonas Neergaard-Nielsen (Technical University of Denmark) - Code contributor, Windows support
JP Hadden (University of Bristol) - Code contributor, improved Bloch sphere visualization
Kevin Fischer (Stanford) - Code contributor
Laurence Stant - Documentation
Markus Baden (Centre for Quantum Technologies, Singapore) - Code contributor, Documentation
Myung-Joong Hwang (Pohang University of Science and Technology) - Bug hunter
Neill Lambert (RIKEN) - Code contributor, Windows support
Nikolas Tezak (Stanford) - Code contributor
Per Nielsen (Technical University of Denmark) - Bug hunter, Code contributor
Piotr Migdał (ICFO) - Code contributor
Reinier Heeres (Yale University) - Code contributor
Robert Jördens (NIST) - Linux packaging
Simon Whalen - Code contributor
W.M. Witzel - Bug hunter

227

http://jrjohansson.github.io/research.html
http://nqdl.korea.ac.kr

CHAPTER
SEVEN

BIBLIOGRAPHY

229

CHAPTER
EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

231

BIBLIOGRAPHY

[R1] Shore, B. W., “The Theory of Coherent Atomic Excitation”, Wiley, 1990.

[R2] http://en.wikipedia.org/wiki/Concurrence_(quantum_computing)

[R3] 1. a) Duff, K. Kaya, and B. Ucar, “Design, Implementation, and

[R4] 1. a) Duff and J. Koster, “The design and use of algorithms for

[Hav03] Havel, T. Robust procedures for converting among Lindblad, Kraus and matrix representations of quan-
tum dynamical semigroups. Journal of Mathematical Physics 44 2, 534 (2003). doi:10.1063/1.1518555.

[Wat13] Watrous, J. Theory of Quantum Information, lecture notes.

[Moh08] 13. Mohseni, A. T. Rezakhani, D. A. Lidar, Quantum-process tomography: Resource analysis of dif-
ferent strategies, Phys. Rev. A 77, 032322 (2008). doi:10.1103/PhysRevA.77.032322.

[Gri98] 13. Grifoni, P. Hänggi, Driven quantum tunneling, Physics Reports 304, 299 (1998).
doi:10.1016/S0370-1573(98)00022-2.

[Cre03] 3. a) Creffield, Location of crossings in the Floquet spectrum of a driven two-level system, Phys.
Rev. B 67, 165301 (2003). doi:10.1103/PhysRevB.67.165301.

[Gar03] Gardineer and Zoller, Quantum Noise (Springer, 2004).

[Bre02] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford, 2002).

[Coh92] 3. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and
Applications, (Wiley, 1992).

[WBC11] C. Wood, J. Biamonte, D. G. Cory, Tensor networks and graphical calculus for open quantum systems.
arXiv:1111.6950

233

http://en.wikipedia.org/wiki/Concurrence_(quantum_computing
http://dx.doi.org/10.1063/1.1518555
https://cs.uwaterloo.ca/~watrous/CS766/
http://dx.doi.org/10.1103/PhysRevA.77.032322
http://dx.doi.org/10.1016/S0370-1573(98)00022-2
http://dx.doi.org/10.1103/PhysRevB.67.165301
http://arxiv.org/abs/1111.6950

PYTHON MODULE INDEX

q
qutip, 218
qutip.bloch_redfield, 172
qutip.continuous_variables, 166
qutip.control.grape, 204
qutip.control.pulsegen, 212
qutip.control.pulseoptim, 205
qutip.correlation, 179
qutip.entropy, 163
qutip.essolve, 171
qutip.expect, 162
qutip.fileio, 215
qutip.floquet, 173
qutip.fortran.mcsolve_f90, 171
qutip.graph, 212
qutip.ipynbtools, 217
qutip.mcsolve, 170
qutip.mesolve, 168
qutip.metrics, 164
qutip.operators, 152
qutip.parallel, 215
qutip.partial_transpose, 163
qutip.propagator, 189
qutip.qip.algorithms.qft, 204
qutip.qip.gates, 198
qutip.qip.qubits, 203
qutip.random_objects, 158
qutip.sesolve, 168
qutip.states, 146
qutip.steadystate, 186
qutip.stochastic, 177
qutip.superop_reps, 161
qutip.superoperator, 160
qutip.tensor, 161
qutip.three_level_atom, 159
qutip.tomography, 197
qutip.utilities, 214
qutip.visualization, 191
qutip.wigner, 190

235

INDEX

A
about() (in module qutip), 218
add_1q_gate() (QubitCircuit method), 133
add_annotation() (Bloch method), 123
add_circuit() (QubitCircuit method), 133
add_gate() (QubitCircuit method), 133
add_points() (Bloch method), 123
add_points() (Bloch3d method), 125
add_states() (Bloch method), 123
add_states() (Bloch3d method), 125
add_vectors() (Bloch method), 123
add_vectors() (Bloch3d method), 125
adjacent_gates() (CircuitProcessor method), 134
adjacent_gates() (QubitCircuit method), 133
adjacent_gates() (SpinChain method), 135
average_gate_fidelity() (in module qutip.metrics),

166

B
basis() (in module qutip.states), 146
berkeley() (in module qutip.qip.gates), 199
Bloch (class in qutip.bloch), 122
Bloch3d (class in qutip.bloch3d), 124
bloch_redfield_solve() (in module

qutip.bloch_redfield), 173
bloch_redfield_tensor() (in module

qutip.bloch_redfield), 173
breadth_first_search() (in module qutip.graph), 212
brmesolve() (in module qutip.bloch_redfield), 172
build_preconditioner() (in module

qutip.steadystate), 188
bures_angle() (in module qutip.metrics), 165
bures_dist() (in module qutip.metrics), 165

C
checkherm() (Qobj method), 116
CircuitProcessor (class in qutip.qip.models), 134
CircularSpinChain (class in

qutip.qip.models.spinchain), 136
clear() (Bloch method), 123
clear() (Bloch3d method), 126
clebsch() (in module qutip.utilities), 214
cnot() (in module qutip.qip.gates), 199
coherence_function_g1() (in module

qutip.correlation), 185

coherence_function_g2() (in module
qutip.correlation), 186

coherent() (in module qutip.states), 147
coherent_dm() (in module qutip.states), 147
combine_dyn_gen() (Dynamics method), 140
composite() (in module qutip.tensor), 162
compute_evolution() (Dynamics method), 140
concurrence() (in module qutip.entropy), 163
conj() (Qobj method), 116
controlled_gate() (in module qutip.qip.gates), 202
convert_unit() (in module qutip.utilities), 214
correlation() (in module qutip.correlation), 179
correlation_2op_1t() (in module qutip.correlation),

180
correlation_2op_2t() (in module qutip.correlation),

180
correlation_3op_1t() (in module qutip.correlation),

181
correlation_3op_2t() (in module qutip.correlation),

182
correlation_4op_1t() (in module qutip.correlation),

182
correlation_4op_2t() (in module qutip.correlation),

183
correlation_matrix() (in module

qutip.continuous_variables), 166
correlation_matrix_field() (in module

qutip.continuous_variables), 166
correlation_matrix_quadrature() (in module

qutip.continuous_variables), 167
correlation_ss() (in module qutip.correlation), 179
covariance_matrix() (in module

qutip.continuous_variables), 166
cphase() (in module qutip.qip.gates), 199
create() (in module qutip.operators), 152
create_pulse_gen() (in module

qutip.control.pulsegen), 211
create_pulse_optimizer() (in module

qutip.control.pulseoptim), 209
csign() (in module qutip.qip.gates), 199

D
dag() (Qobj method), 116
destroy() (in module qutip.operators), 153
diag() (Qobj method), 116

237

dispersive_gate_correction() (DispersivecQED
method), 137

DispersivecQED (class in qutip.qip.models.cqed),
136

displace() (in module qutip.operators), 153
Distribution (class in qutip.distributions), 129
Dynamics (class in qutip.control.dynamics), 137
DynamicsSymplectic (class in

qutip.control.dynamics), 142
DynamicsUnitary (class in qutip.control.dynamics),

141

E
eigenenergies() (Qobj method), 116
eigenstates() (Qobj method), 117
eliminate_states() (Qobj method), 117
enr_destroy() (in module qutip.operators), 157
enr_fock() (in module qutip.states), 152
enr_identity() (in module qutip.operators), 157
enr_state_dictionaries() (in module qutip.states),

152
enr_thermal_dm() (in module qutip.states), 152
ensure_decomp_curr() (Dynamics method), 140
entropy_conditional() (in module qutip.entropy),

163
entropy_linear() (in module qutip.entropy), 163
entropy_mutual() (in module qutip.entropy), 164
entropy_vn() (in module qutip.entropy), 164
eseries (class in qutip), 121
essolve() (in module qutip.essolve), 171
evaluate() (Qobj static method), 117
expect() (in module qutip.expect), 162
expm() (Qobj method), 118
extract_states() (Qobj method), 118

F
fidelity() (in module qutip.metrics), 164
file_data_read() (in module qutip.fileio), 215
file_data_store() (in module qutip.fileio), 215
flag_system_changed() (Dynamics method), 140
floquet_modes() (in module qutip.floquet), 174
floquet_modes_t() (in module qutip.floquet), 174
floquet_modes_t_lookup() (in module

qutip.floquet), 175
floquet_modes_table() (in module qutip.floquet),

175
floquet_state_decomposition() (in module

qutip.floquet), 176
floquet_states_t() (in module qutip.floquet), 175
floquet_wavefunction_t() (in module qutip.floquet),

176
fmmesolve() (in module qutip.floquet), 173
fock() (in module qutip.states), 148
fock_dm() (in module qutip.states), 148
fredkin() (in module qutip.qip.gates), 201
fsesolve() (in module qutip.floquet), 176
full() (Qobj method), 118

G
Gate (class in qutip.qip.circuit), 132
gate_expand_1toN() (in module qutip.qip.gates),

202
gate_expand_2toN() (in module qutip.qip.gates),

203
gate_expand_3toN() (in module qutip.qip.gates),

203
gate_sequence_product() (in module

qutip.qip.gates), 202
gen_pulse() (PulseGen method), 143
gen_pulse() (PulseGenLinear method), 144
gen_pulse() (PulseGenRandom method), 143
gen_pulse() (PulseGenSaw method), 146
gen_pulse() (PulseGenSine method), 145
gen_pulse() (PulseGenSquare method), 146
gen_pulse() (PulseGenTriangle method), 146
gen_pulse() (PulseGenZero method), 144
get_ctrl_dyn_gen() (Dynamics method), 140
get_ctrl_dyn_gen() (DynamicsSymplectic method),

142
get_ctrl_dyn_gen() (DynamicsUnitary method), 142
get_drift_dim() (Dynamics method), 140
get_dyn_gen() (Dynamics method), 140
get_dyn_gen() (DynamicsSymplectic method), 142
get_dyn_gen() (DynamicsUnitary method), 142
get_num_ctrls() (Dynamics method), 140
get_ops_and_u() (CircuitProcessor method), 134
get_ops_labels() (CircuitProcessor method), 134
get_owd_evo_target() (Dynamics method), 140
globalphase() (in module qutip.qip.gates), 202
grape_unitary() (in module qutip.control.grape), 204
grape_unitary_adaptive() (in module

qutip.control.grape), 205
GRAPEResult (class in qutip.control.grape), 137
graph_degree() (in module qutip.graph), 212
groundstate() (Qobj method), 118

H
hadamard_transform() (in module qutip.qip.gates),

202
HarmonicOscillatorProbabilityFunction (class in

qutip.distributions), 132
HarmonicOscillatorWaveFunction (class in

qutip.distributions), 131
hilbert_dist() (in module qutip.metrics), 165
hinton() (in module qutip.visualization), 191

I
identity() (in module qutip.operators), 155
init_pulse() (PulseGen method), 143
init_pulse() (PulseGenLinear method), 144, 145
init_pulse() (PulseGenPeriodic method), 145
init_time_slots() (Dynamics method), 140
initialize_controls() (Dynamics method), 140
iswap() (in module qutip.qip.gates), 200

238

J
jmat() (in module qutip.operators), 154

K
ket2dm() (in module qutip.states), 149

L
lindblad_dissipator() (in module

qutip.superoperator), 160
LinearSpinChain (class in

qutip.qip.models.spinchain), 136
linspace_with() (in module qutip.utilities), 214
liouvillian() (in module qutip.superoperator), 160
load_circuit() (CircuitProcessor method), 134
logarithmic_negativity() (in module

qutip.continuous_variables), 167

M
make_sphere() (Bloch method), 123
make_sphere() (Bloch3d method), 126
marginal() (Distribution method), 130
matrix_element() (Qobj method), 119
matrix_histogram() (in module qutip.visualization),

191
matrix_histogram_complex() (in module

qutip.visualization), 192
maximum_bipartite_matching() (in module

qutip.graph), 213
mcsolve() (in module qutip.mcsolve), 170
mcsolve_f90() (in module

qutip.fortran.mcsolve_f90), 171
mesolve() (in module qutip.mesolve), 168

N
n_thermal() (in module qutip.utilities), 214
norm() (Qobj method), 119
num() (in module qutip.operators), 154

O
ode2es() (in module qutip.essolve), 172
operator_to_vector() (in module

qutip.superoperator), 160
optimize_circuit() (CircuitProcessor method), 134
optimize_pulse() (in module

qutip.control.pulseoptim), 205
optimize_pulse_unitary() (in module

qutip.control.pulseoptim), 207
Options (class in qutip.solver), 126
orbital() (in module qutip), 196
overlap() (Qobj method), 119

P
parallel_map() (in module qutip.ipynbtools), 217
parallel_map() (in module qutip.parallel), 216
parfor() (in module qutip.ipynbtools), 217
parfor() (in module qutip.parallel), 215
partial_transpose() (in module

qutip.partial_transpose), 163

permute() (Qobj method), 120
phase() (in module qutip.operators), 157
phase_basis() (in module qutip.states), 150
phasegate() (in module qutip.qip.gates), 198
plot_energy_levels() (in module

qutip.visualization), 192
plot_expectation_values() (in module

qutip.visualization), 195
plot_fock_distribution() (in module

qutip.visualization), 192
plot_grape_control_fields() (in module

qutip.control.grape), 204
plot_points() (Bloch3d method), 126
plot_pulses() (CircuitProcessor method), 135
plot_qubism() (in module qutip.visualization), 195
plot_schmidt() (in module qutip.visualization), 194
plot_spin_distribution_2d() (in module

qutip.visualization), 196
plot_spin_distribution_3d() (in module

qutip.visualization), 196
plot_vectors() (Bloch3d method), 126
plot_wigner() (in module qutip.visualization), 193
plot_wigner_fock_distribution() (in module

qutip.visualization), 193
process_fidelity() (in module qutip.metrics), 166
project() (Distribution method), 130
propagator() (in module qutip.propagator), 189
propagator_steadystate() (in module

qutip.propagator), 189
propagators() (QubitCircuit method), 133
ptrace() (Qobj method), 120
pulse_matrix() (CircuitProcessor method), 135
PulseGen (class in qutip.control.pulsegen), 142
PulseGenLinear (class in qutip.control.pulsegen),

144
PulseGenPeriodic (class in qutip.control.pulsegen),

145
PulseGenRandom (class in qutip.control.pulsegen),

143
PulseGenSaw (class in qutip.control.pulsegen), 146
PulseGenSine (class in qutip.control.pulsegen), 145
PulseGenSquare (class in qutip.control.pulsegen),

145
PulseGenTriangle (class in qutip.control.pulsegen),

146
PulseGenZero (class in qutip.control.pulsegen), 143

Q
QDistribution (class in qutip.distributions), 131
qeye() (in module qutip.operators), 155
qft() (in module qutip.qip.algorithms.qft), 204
qft_gate_sequence() (in module

qutip.qip.algorithms.qft), 204
qft_steps() (in module qutip.qip.algorithms.qft), 204
qfunc() (in module qutip.wigner), 190
qload() (in module qutip.fileio), 215
Qobj (class in qutip), 115
qpt() (in module qutip.tomography), 197

239

qpt_plot() (in module qutip.tomography), 197
qpt_plot_combined() (in module qutip.tomography),

197
qsave() (in module qutip.fileio), 215
qubit_states() (in module qutip.qip.qubits), 203
QubitCircuit (class in qutip.qip.circuit), 132
qutip (module), 189, 196, 218
qutip.bloch_redfield (module), 172
qutip.continuous_variables (module), 166
qutip.control.grape (module), 204
qutip.control.pulsegen (module), 211, 212
qutip.control.pulseoptim (module), 205
qutip.correlation (module), 179
qutip.entropy (module), 163
qutip.essolve (module), 171
qutip.expect (module), 162
qutip.fileio (module), 215
qutip.floquet (module), 173
qutip.fortran.mcsolve_f90 (module), 171
qutip.graph (module), 212
qutip.ipynbtools (module), 217
qutip.mcsolve (module), 170
qutip.mesolve (module), 168
qutip.metrics (module), 164
qutip.operators (module), 152
qutip.parallel (module), 215
qutip.partial_transpose (module), 163
qutip.propagator (module), 189
qutip.qip.algorithms.qft (module), 204
qutip.qip.gates (module), 198
qutip.qip.qubits (module), 203
qutip.random_objects (module), 158
qutip.sesolve (module), 168
qutip.states (module), 146
qutip.steadystate (module), 186
qutip.stochastic (module), 177
qutip.superop_reps (module), 161
qutip.superoperator (module), 160
qutip.tensor (module), 161
qutip.three_level_atom (module), 159
qutip.tomography (module), 197
qutip.utilities (module), 214
qutip.visualization (module), 191
qutip.wigner (module), 190
qutrit_basis() (in module qutip.states), 149
qutrit_ops() (in module qutip.operators), 155

R
rand_dm() (in module qutip.random_objects), 158
rand_herm() (in module qutip.random_objects), 158
rand_ket() (in module qutip.random_objects), 158
rand_unitary() (in module qutip.random_objects),

159
remove_gate() (QubitCircuit method), 133
render() (Bloch method), 123
reset() (PulseGen method), 143
reset() (PulseGenLinear method), 144, 145
reset() (PulseGenPeriodic method), 145

resolve_gates() (QubitCircuit method), 134
Result (class in qutip.solver), 127
reverse_circuit() (QubitCircuit method), 134
reverse_cuthill_mckee() (in module qutip.graph),

212
rhs_clear() (in module qutip), 190
rhs_generate() (in module qutip), 189
rotation() (in module qutip.qip.gates), 202
run() (CircuitProcessor method), 135
run_state() (CircuitProcessor method), 135
rx() (in module qutip.qip.gates), 198
ry() (in module qutip.qip.gates), 198
rz() (in module qutip.qip.gates), 198

S
save() (Bloch method), 123
save() (Bloch3d method), 126
save_amps() (Dynamics method), 140
serial_map() (in module qutip.parallel), 216
sesolve() (in module qutip.sesolve), 168
set_label_convention() (Bloch method), 124
set_log_level() (Dynamics method), 141
show() (Bloch method), 124
show() (Bloch3d method), 126
sigmam() (in module qutip.operators), 155
sigmap() (in module qutip.operators), 155
sigmax() (in module qutip.operators), 156
sigmay() (in module qutip.operators), 156
sigmaz() (in module qutip.operators), 156
simdiag() (in module qutip), 218
smepdpsolve() (in module qutip.stochastic), 178
smesolve() (in module qutip.stochastic), 177
snot() (in module qutip.qip.gates), 198
spec() (eseries method), 121
spectral_decomp() (Dynamics method), 141
spectral_decomp() (DynamicsUnitary method), 142
spectrum() (in module qutip.correlation), 184
spectrum_correlation_fft() (in module

qutip.correlation), 185
spectrum_pi() (in module qutip.correlation), 184
spectrum_ss() (in module qutip.correlation), 184
sphereplot() (in module qutip.visualization), 194
SpinChain (class in qutip.qip.models.spinchain),

135
spost() (in module qutip.superoperator), 160
spre() (in module qutip.superoperator), 160
sprepost() (in module qutip.superoperator), 160
sqrtiswap() (in module qutip.qip.gates), 201
sqrtm() (Qobj method), 120
sqrtnot() (in module qutip.qip.gates), 198
sqrtswap() (in module qutip.qip.gates), 200
squeeze() (in module qutip.operators), 156
squeezing() (in module qutip.operators), 157
ssepdpsolve() (in module qutip.stochastic), 178
ssesolve() (in module qutip.stochastic), 177
state_index_number() (in module qutip.states), 151
state_number_enumerate() (in module qutip.states),

150

240

state_number_index() (in module qutip.states), 151
state_number_qobj() (in module qutip.states), 151
steadystate() (in module qutip.steadystate), 186
StochasticSolverOptions (class in qutip.stochastic),

127
super_tensor() (in module qutip.tensor), 162
swap() (in module qutip.qip.gates), 200
swapalpha() (in module qutip.qip.gates), 200

T
tensor() (in module qutip.tensor), 161
tensor_contract() (in module qutip.tensor), 162
thermal_dm() (in module qutip.states), 149
three_level_basis() (in module

qutip.three_level_atom), 159
three_level_ops() (in module

qutip.three_level_atom), 159
tidyup() (eseries method), 121
tidyup() (Qobj method), 120
to_choi() (in module qutip.superop_reps), 161
to_kraus() (in module qutip.superop_reps), 161
to_super() (in module qutip.superop_reps), 161
toffoli() (in module qutip.qip.gates), 201
tr() (Qobj method), 120
tracedist() (in module qutip.metrics), 165
trans() (Qobj method), 120
transform() (Qobj method), 121
TwoModeQuadratureCorrelation (class in

qutip.distributions), 131

U
unit() (Qobj method), 121
update() (HarmonicOscillatorProbabilityFunction

method), 132
update() (HarmonicOscillatorWaveFunction

method), 132
update() (TwoModeQuadratureCorrelation method),

131
update_ctrl_amps() (Dynamics method), 141
update_psi() (TwoModeQuadratureCorrelation

method), 131
update_rho() (TwoModeQuadratureCorrelation

method), 131

V
value() (eseries method), 122
variance() (in module qutip.expect), 162
vector_mutation (Bloch attribute), 124
vector_style (Bloch attribute), 124
vector_to_operator() (in module

qutip.superoperator), 160
vector_width (Bloch attribute), 124
version_table() (in module qutip.ipynbtools), 218
visualize() (Distribution method), 130

W
weighted_bipartite_matching() (in module

qutip.graph), 213

wigner() (in module qutip.wigner), 190
wigner_covariance_matrix() (in module

qutip.continuous_variables), 167
WignerDistribution (class in qutip.distributions),

130

241

	Contents
	Frontmatter
	About This Documentation
	Citing This Project
	Funding
	About QuTiP
	Contributing to QuTiP

	Installation
	General Requirements
	Platform-independent installation
	Get the source code
	Installing from source
	Installation on Ubuntu Linux
	Installation on Mac OS X (10.8+)
	Installation on Windows
	Optional Installation Options
	Verifying the Installation
	Checking Version Information using the About Function

	Users Guide
	Guide Overview
	Basic Operations on Quantum Objects
	Manipulating States and Operators
	Using Tensor Products and Partial Traces
	Time Evolution and Quantum System Dynamics
	Solving for Steady-State Solutions
	An Overview of the Eseries Class
	Two-time correlation functions
	Plotting on the Bloch Sphere
	Visualization of quantum states and processes
	Parallel computation
	Saving QuTiP Objects and Data Sets
	Generating Random Quantum States & Operators
	Modifying Internal QuTiP Settings

	API documentation
	Classes
	Functions

	Change Log
	Version 3.1.0 (January 1, 2015):
	Version 3.0.1 (Aug 5, 2014):
	Version 3.0.0 (July 17, 2014):
	Version 2.2.0 (March 01, 2013):
	Version 2.1.0 (October 05, 2012):
	Version 2.0.0 (June 01, 2012):
	Version 1.1.4 (May 28, 2012):
	Version 1.1.3 (November 21, 2011):
	Version 1.1.2 (October 27, 2011)
	Version 1.1.1 (October 25, 2011)
	Version 1.1.0 (October 04, 2011)
	Version 1.0.0 (July 29, 2011)

	Developers
	Lead Developers
	Contributors

	Bibliography
	Indices and tables
	Bibliography
	Python Module Index
	Index

